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Maple Lecture 16. Maple Procedures and Recursion

Maple procedures can take procedures as input and give procedures on return. We will also see how to
work with indexed procedures. With a remember table we can make recursive procedures to run efficiently.
The material in this lecture in inspired on [2, Section 8.4]. The first example below is taken from [3, pages

75-77], see also [1, Section 3.5] for recursion and remember tables. The most recent information can be found
in the Maple 9 manuals [4] and [5].

16.1 Procedures returning Procedures

Newton’s method is one of the most fundamental algorithms for approximating solutions of f(x) = 0, where
the approximations are generated as follows:

x(k + 1) = x(k)−
f(x(k))

f ′(x(k))
, for k = 0, 1, . . .

where f ′(x) is the derivative of the function f .
We will make a procedure that returns the right hand side of the iteration above. First of all, we must

note the difference between x and x -> x: the first x is just the name x, while x -> x is the function x.

> newtonstep := proc(f::procedure)

> description ‘returns one step with Newton’s method on f‘:

> local ix:

> ix := x -> x: # identity function

> ix - eval(f)/D(eval(f)); # implicit return

> end proc;

















Note that we use the eval in the procedure to force Maple to evaluate, because for efficiency, Maple would
otherwise delay the evaluation. Let us apply this to approximate a root of cos(x) = 1/2. First we must make
a function g(x) = cos(x)− 1/2.

[> g := x -> cos(x) - 1/2; # compute root of g(x) = 0

[> gstep := newtonstep(g); # create a procedure

[> gstep(a); # symbolic execution

[> gstep(1.4); # numerical execution

[> y := 0.4: # starting value

[> Digits := 32: # working precision

> for i from 1 to 7 do # we will do 7 steps

> y := gstep(y);

> end do;





We know that cos(π/3) = 1/2, let us thus check how accurate our result is:

[> evalf(y - Pi/3);

16.2 Indexed Procedures

An example of an indexed procedure is the logarithm, where the base can be given as an index.

[> interface(verboseproc=3);

[> print(log);

By default, we get the natural logarithm:

[> log(10.0); log(exp(1));
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To get the decimal logarithm, we need to provide the base 10 of the logarithm as index to the function call:

[> log[10](10.0);

An index is just like an index in an array :

[> a := A[3];

[> type(a,‘indexed‘);

[> op(a);

We see that we can check on whether a name is indexed or not via type and get access to the index with op.
As example, suppose f(t) = b + (70 - b)*exp(-0.2*t) models temperature in function of time with

b as index. Initially, at t = 0, the temperature is 70. As t goes to infinity, the final temperature is b. If b is
not provided as index, take b = 32 as default.

> cool := proc(t)

> description ‘model of cooling temperature with index‘:

> local b:

> if type(procname,‘indexed‘) # test if procedure has an index

> then b := op(procname): # take index as base

> else b := 32: # default value of base

> end if:

> return b + (70-b)*exp(-0.2*t): # the general formula

> end proc;

[> cool[20](1.4); cool(1.4); # test for different values of base

[> cool[20](0); cool(0); # initially we are inside

[> cool[20](100); cool(100); # close to outside temperature





























We use indexed procedures to implement functions with parameters for which good default values are
known. The default values may correspond to cases for which a very efficient implementation exists, whereas
for other values, a general recipe needs to be applied.

16.3 Recursive Procedure Definitions

Many functions are defined recursively. We see howMaple has a nice mechanism to avoid superfluous recursive
calls. One classical example of a recursive sequence are the Fibonacci numbers:

F (0) = 0, F (1) = 1, and F (n) = F (n− 2) + F (n− 1), for n ≥ 2.

The direct way to implement this goes as follows:

> fib := proc(n::nonnegint)

> description ‘returns the nth Fibonacci number‘:

> if n = 0 then

> return 0:

> elif n = 1 then

> return 1:

> else

> return fib(n-2)+fib(n-1):

> end if;

> end proc;

> for i from 1 to 10 do # first ten Fibonacci numbers

> fib(i);

> end do;





































This is a very expensive way to compute the Fibonacci numbers, because of too many repetitive calls.
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[> starttime := time():

[> fib(20);

[> elapsed := (time()-starttime)*seconds;

In Figure 1 we see the tree of procedure calls to compute F (4). In general, to compute the nth Fibonacci
number, 2n calls are needed.
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Figure 1: Procedure Calls to compute F (4).

We will slightly modify the definition of the procedure to compute the Fibonacci numbers:

> newfib := proc(n::nonnegint)

> description ‘Fibonacci with remember table‘:

> option remember:

> if n = 0 then

> return 0;

> elif n = 1 then

> return 1;

> else

> return newfib(n-2) + newfib(n-1);

> end if:

> end proc;

[> starttime := time():

[> newfib(20);

[> elapsed := (time()-starttime)*seconds;





































With the option remember, Maple has built a “remember table” for the procedure. This remember table
stores the results of all calls of the procedure. Here is how we can consult this table:

[> eval(newfib);

[> T := op(4,eval(newfib));

If you are curious about the “4”, do ?proc; to see where the other operands are used for. With calls to
newfib for higher numbers, we add values to the table:

[> newfib(21);

[> eval(T);

Once we selected the remember table and assigned it to a variable, we can modify the table.

[> newfib(20) := 1; # introduce error in the table

[> eval(T);

We can also unassign values in the table :
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[> T[20] := evaln(T[20]);

[> eval(T);

[> newfib(22);

As the computation of the the 22nd Fibonacci number required the 20th, the 20th element has been recom-
puted and stored in the remember table:

[> eval(T);

The command forget is used to clear the remember table of a Maple procedure. For example:

[> forget(newfib);

16.4 Assignments

1. Write a procedure fractional power which returns x1/n for one argument x and index n. If the index
is omitted, fractional power(x) =

√
x.

2. Indices can be sequences. Write a procedure line which has one argument x and up to two indices.
The output of line is as follows: line[a, b](x) = a+ bx, line[a](x) = a1 + a2x, and line(x) = x.

3. The secant method to find a solution of f(x) = 0 is defined by

xn = xn−1 −
xn−1 − xn−2

f(xn−1)− f(xn−2)
f(xn−1), for n ≥ 2.

While the secant method requires no derivatives, we need two points (x0 and x1) to start the iteration.

For simplicity we will take for x0 and x1 a random float generated by evalf(rand()/10ˆ12.

(a) Write a Maple procedure to implement the formula above, to execute one step of the secant
method. Use the following prototype:

secantstep := proc(f::procedure,x0::float,x1::float);

Test your implementation on f(x) = cos(x)− 1/2 = 0.
(b) Use secantstep to define the Maple procedure with prototype

secant1 := proc(f::procedure,n::nonnegint);

which returns xn, starting from random values for x0 and x1.

Also here, test your implementation on f(x) = cos(x) − 1/2 = 0.

(c) Write a recursive implementation for the secant method, using the prototype

secant2 := proc(f::procedure,n::nonnegint);

which also returns xn, starting from random values for x0 and x1.

Make sure this recursive implementation is as efficient as the iterative version.

4. Execute diff(sin(x),x); and change the remember table of diff so that next time we execute diff(sin(x),x);
we get sin(x) on return.

5. The Bell numbers B(n) are defined by B(0) = 1 and B(n) =

n−1
∑

i=0

(

n− 1
i

)

B(i), for n > 0. They

count the number of partitions of a set of n elements.

Write a recursive procedure to compute the Bell numbers. The binomial coefficient

(

n− 1
i

)

is

computed by binomial(n-1,i). Make sure your procedure is efficient enough to compute B(50).
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6. The n-th Chebychev polynomial is also often defined as cos(n arccos(x)).

Give the definition of the procedure C which takes on input x and has index n.

Thus C[n](x) returns cos(n arccos(x)) while C[10](0.5) returns the value of the 10-th Chebychev poly-
nomial at 0.5. Compare this value with orthopoly[T](10,0.5).

7. Let L[n](x) denote a special kind of the Laguerre polynomial of degree n in the variable x.

We define L[n](x) by L[0](x) = 1, L[1](x) = x, and
for any degree n > 1 : n*L[n](x) = (2*n-1-x)*L[n-1](x) - (n-1)*L[n-2](x).

Write a Maple procedure Laguerre that returns L[n](x).

Use an index for the degree n and take x as parameter in the procedure.

Make sure your procedure can compute the 50-th Laguerre polynomial.
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