
MCS 320 Introduction to Symbolic Computation Spring 2007

Maple Lecture 16. Maple Procedures and Recursion

Maple procedures can take procedures as input and give procedures on return. We will also see how to
work with indexed procedures. With a remember table we can make recursive procedures to run efficiently.
The material in this lecture in inspired on [2, Section 8.4]. The first example below is taken from [3, pages

75-77], see also [1, Section 3.5] for recursion and remember tables. The most recent information can be found
in the Maple 9 manuals [4] and [5].

16.1 Procedures returning Procedures

Newton’s method is one of the most fundamental algorithms for approximating solutions of f(x) = 0, where
the approximations are generated as follows:

x(k + 1) = x(k)−
f(x(k))

f ′(x(k))
, for k = 0, 1, . . .

where f ′(x) is the derivative of the function f .
We will make a procedure that returns the right hand side of the iteration above. First of all, we must

note the difference between x and x -> x: the first x is just the name x, while x -> x is the function x.

> newtonstep := proc(f::procedure)

> description ‘returns one step with Newton’s method on f‘:

> local ix:

> ix := x -> x: # identity function

> ix - eval(f)/D(eval(f)); # implicit return

> end proc;

















Note that we use the eval in the procedure to force Maple to evaluate, because for efficiency, Maple would
otherwise delay the evaluation. Let us apply this to approximate a root of cos(x) = 1/2. First we must make
a function g(x) = cos(x)− 1/2.

[> g := x -> cos(x) - 1/2; # compute root of g(x) = 0

[> gstep := newtonstep(g); # create a procedure

[> gstep(a); # symbolic execution

[> gstep(1.4); # numerical execution

[> y := 0.4: # starting value

[> Digits := 32: # working precision

> for i from 1 to 7 do # we will do 7 steps

> y := gstep(y);

> end do;





We know that cos(π/3) = 1/2, let us thus check how accurate our result is:

[> evalf(y - Pi/3);

16.2 Indexed Procedures

An example of an indexed procedure is the logarithm, where the base can be given as an index.

[> interface(verboseproc=3);

[> print(log);

By default, we get the natural logarithm:

[> log(10.0); log(exp(1));

Jan Verschelde, February 26, 2007 UIC, Dept of Math, Stat & CS Lecture 16, page 1



MCS 320 Introduction to Symbolic Computation Spring 2007

To get the decimal logarithm, we need to provide the base 10 of the logarithm as index to the function call:

[> log[10](10.0);

An index is just like an index in an array :

[> a := A[3];

[> type(a,‘indexed‘);

[> op(a);

We see that we can check on whether a name is indexed or not via type and get access to the index with op.
As example, suppose f(t) = b + (70 - b)*exp(-0.2*t) models temperature in function of time with

b as index. Initially, at t = 0, the temperature is 70. As t goes to infinity, the final temperature is b. If b is
not provided as index, take b = 32 as default.

> cool := proc(t)

> description ‘model of cooling temperature with index‘:

> local b:

> if type(procname,‘indexed‘) # test if procedure has an index

> then b := op(procname): # take index as base

> else b := 32: # default value of base

> end if:

> return b + (70-b)*exp(-0.2*t): # the general formula

> end proc;

[> cool[20](1.4); cool(1.4); # test for different values of base

[> cool[20](0); cool(0); # initially we are inside

[> cool[20](100); cool(100); # close to outside temperature





























We use indexed procedures to implement functions with parameters for which good default values are
known. The default values may correspond to cases for which a very efficient implementation exists, whereas
for other values, a general recipe needs to be applied.

16.3 Recursive Procedure Definitions

Many functions are defined recursively. We see howMaple has a nice mechanism to avoid superfluous recursive
calls. One classical example of a recursive sequence are the Fibonacci numbers:

F (0) = 0, F (1) = 1, and F (n) = F (n− 2) + F (n− 1), for n ≥ 2.

The direct way to implement this goes as follows:

> fib := proc(n::nonnegint)

> description ‘returns the nth Fibonacci number‘:

> if n = 0 then

> return 0:

> elif n = 1 then

> return 1:

> else

> return fib(n-2)+fib(n-1):

> end if;

> end proc;

> for i from 1 to 10 do # first ten Fibonacci numbers

> fib(i);

> end do;





































This is a very expensive way to compute the Fibonacci numbers, because of too many repetitive calls.

Jan Verschelde, February 26, 2007 UIC, Dept of Math, Stat & CS Lecture 16, page 2



MCS 320 Introduction to Symbolic Computation Spring 2007

[> starttime := time():

[> fib(20);

[> elapsed := (time()-starttime)*seconds;

In Figure 1 we see the tree of procedure calls to compute F (4). In general, to compute the nth Fibonacci
number, 2n calls are needed.

F (4)
©©¼ HHj

F (2)

¡ª

F (0)

@R

F (1)

F (3)

¡ª

F (1)

@R

F (2)

¡ª

F (0)

@R

F (1)

Figure 1: Procedure Calls to compute F (4).

We will slightly modify the definition of the procedure to compute the Fibonacci numbers:

> newfib := proc(n::nonnegint)

> description ‘Fibonacci with remember table‘:

> option remember:

> if n = 0 then

> return 0;

> elif n = 1 then

> return 1;

> else

> return newfib(n-2) + newfib(n-1);

> end if:

> end proc;

[> starttime := time():

[> newfib(20);

[> elapsed := (time()-starttime)*seconds;





































With the option remember, Maple has built a “remember table” for the procedure. This remember table
stores the results of all calls of the procedure. Here is how we can consult this table:

[> eval(newfib);

[> T := op(4,eval(newfib));

If you are curious about the “4”, do ?proc; to see where the other operands are used for. With calls to
newfib for higher numbers, we add values to the table:

[> newfib(21);

[> eval(T);

Once we selected the remember table and assigned it to a variable, we can modify the table.

[> newfib(20) := 1; # introduce error in the table

[> eval(T);

We can also unassign values in the table :

Jan Verschelde, February 26, 2007 UIC, Dept of Math, Stat & CS Lecture 16, page 3



MCS 320 Introduction to Symbolic Computation Spring 2007

[> T[20] := evaln(T[20]);

[> eval(T);

[> newfib(22);

As the computation of the the 22nd Fibonacci number required the 20th, the 20th element has been recom-
puted and stored in the remember table:

[> eval(T);

The command forget is used to clear the remember table of a Maple procedure. For example:

[> forget(newfib);

16.4 Assignments

1. Write a procedure fractional power which returns x1/n for one argument x and index n. If the index
is omitted, fractional power(x) =

√
x.

2. Indices can be sequences. Write a procedure line which has one argument x and up to two indices.
The output of line is as follows: line[a, b](x) = a+ bx, line[a](x) = a1 + a2x, and line(x) = x.

3. The secant method to find a solution of f(x) = 0 is defined by

xn = xn−1 −
xn−1 − xn−2

f(xn−1)− f(xn−2)
f(xn−1), for n ≥ 2.

While the secant method requires no derivatives, we need two points (x0 and x1) to start the iteration.

For simplicity we will take for x0 and x1 a random float generated by evalf(rand()/10ˆ12.

(a) Write a Maple procedure to implement the formula above, to execute one step of the secant
method. Use the following prototype:

secantstep := proc(f::procedure,x0::float,x1::float);

Test your implementation on f(x) = cos(x)− 1/2 = 0.
(b) Use secantstep to define the Maple procedure with prototype

secant1 := proc(f::procedure,n::nonnegint);

which returns xn, starting from random values for x0 and x1.

Also here, test your implementation on f(x) = cos(x) − 1/2 = 0.

(c) Write a recursive implementation for the secant method, using the prototype

secant2 := proc(f::procedure,n::nonnegint);

which also returns xn, starting from random values for x0 and x1.

Make sure this recursive implementation is as efficient as the iterative version.

4. Execute diff(sin(x),x); and change the remember table of diff so that next time we execute diff(sin(x),x);
we get sin(x) on return.

5. The Bell numbers B(n) are defined by B(0) = 1 and B(n) =

n−1
∑

i=0

(

n− 1
i

)

B(i), for n > 0. They

count the number of partitions of a set of n elements.

Write a recursive procedure to compute the Bell numbers. The binomial coefficient

(

n− 1
i

)

is

computed by binomial(n-1,i). Make sure your procedure is efficient enough to compute B(50).

Jan Verschelde, February 26, 2007 UIC, Dept of Math, Stat & CS Lecture 16, page 4



MCS 320 Introduction to Symbolic Computation Spring 2007

6. The n-th Chebychev polynomial is also often defined as cos(n arccos(x)).

Give the definition of the procedure C which takes on input x and has index n.

Thus C[n](x) returns cos(n arccos(x)) while C[10](0.5) returns the value of the 10-th Chebychev poly-
nomial at 0.5. Compare this value with orthopoly[T](10,0.5).

7. Let L[n](x) denote a special kind of the Laguerre polynomial of degree n in the variable x.

We define L[n](x) by L[0](x) = 1, L[1](x) = x, and
for any degree n > 1 : n*L[n](x) = (2*n-1-x)*L[n-1](x) - (n-1)*L[n-2](x).

Write a Maple procedure Laguerre that returns L[n](x).

Use an index for the degree n and take x as parameter in the procedure.

Make sure your procedure can compute the 50-th Laguerre polynomial.

References

[1] R.M. Corless. Essential Maple 7. An introduction for Scientific Programmers. Springer-Verlag, 2002.

[2] A. Heck. Introduction to Maple. Springer-Verlag, third edition, 2003.

[3] M.B. Monagan, K.O. Geddes, K.M. Heal, G. Labahn, and S.M. Vorkoetter. Maple V Programming Guide.
Springer-Verlag, 1998.

[4] M.B. Monagan, K.O. Geddes, K.M. Heal, G. Labahn, S.M. Vorkoetter, J. McCarron, and P. DeMarco.
Maple 9 Advanced Programming Guide. Maplesoft, 2003.

[5] M.B. Monagan, K.O. Geddes, K.M. Heal, G. Labahn, S.M. Vorkoetter, J. McCarron, and P. DeMarco.
Maple 9 Introductory Programming Guide. Maplesoft, 2003.

Jan Verschelde, February 26, 2007 UIC, Dept of Math, Stat & CS Lecture 16, page 5


