
Getting Started with the MapleSim
Connector for VI-CarRealTime

Copyright © Maplesoft, a division of Waterloo Maple Inc.
2014

Getting Started with the MapleSim Connector for VI-CarRealTime
Copyright

Maplesoft, Maple, and MapleSim are all trademarks of Waterloo Maple Inc.

© Maplesoft, a division of Waterloo Maple Inc. 2012-2014. All rights reserved.
No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means — electronic, mechanical, photo-
copying, recording, or otherwise. Information in this document is subject to change without notice and does not represent a commitment on the part
of the vendor. The software described in this document is furnished under a license agreement and may be used or copied only in accordance with
the agreement. It is against the law to copy the software on any medium except as specifically allowed in the agreement.

All VI-grade product names are trademarks or registered trademarks of VI-grade GmbH.

All other trademarks are the property of their respective owners.

This document was produced using Maple and DocBook.

Contents
Introduction .. v

1 Getting Started ... 1
1.1 VI-CarRealTime ANSI-C Code Generation Steps ... 1

CRTConnector package ... 1
1.2 Opening the VI-CarRealTime Plugin Solver Generation Template .. 1
1.3 Using the Template ... 1

Step 1: Subsystem Selection .. 2
Step 2: Inputs/Outputs and Parameter Management ... 2
Step 3: C Code Generation Options .. 4
Step 4: Generate Plugin Solver Code .. 6
Step 5: View Generated C Code ... 6

1.4 Viewing Examples .. 7
1.5 Example: Full Powertrain Model ... 7

2 Example: Generating the Plugin Solver Code for the Full Powertrain Model ... 8
2.1 Generating the Plugin Solver Code for the Full Powertrain Model .. 8

Preparing a Model ... 8
3 Using Your Plugin Solver in VI-CarRealTime ... 12

3.1 Preparing a MapleSim Model to Run as a New VI-CarRealTime Project .. 12
3.2 Loading the complete vehicle model example into VI-CarRealTime ... 12
3.3 Disabling the example model's powertrain ... 12
3.4 Enabling your powertrain plugin solver ... 13
3.5 Configuring the road environment .. 14
3.6 Running the simulation .. 15

Index .. 17

iii

List of Tables
Table 2.1: Input variable assignments for the Full Powertrain model. ... 9
Table 2.2: Output variable assignments for the Full Powertrain model. ... 9

iv

Introduction
The MapleSim™ Connector for VI-CarRealTime™ simulation package provides all of the tools you need to prepare
and export your dynamic systems models into VI-CarRealTime ANSI-C source code from a MapleSim model. You
can create a model in MapleSim, simplify it in Maple™ by using an extensive range of analytical tools, and then gen-
erate the source code that you can incorporate into your toolchain.

Scope of Model Support
MapleSim is a comprehensive modeling tool where it is possible to create models that could go beyond the scope of
this Connector. In general, the MapleSim Connector for VI-CarRealTime supports systems of any complexity, including
systems of DAEs of any index, in any mix of domains.

System Requirements
For installation instructions and a complete list of system requirements, see the Install.html file on the product disc.

v

1 Getting Started
1.1 VI-CarRealTime ANSI-C Code Generation Steps
This chapter describes how to use the MapleSim™ Connector for VI-CarRealTime™ and, in the Example: Full
Powertrain Model (page 7) section of this chapter, provides a step by step example on how to generate the C code.
The MapleSim Connector for VI-CarRealTime template consists of the following steps for generating C code and is
described in Using the Template (page 1):

1. Subsystem selection

2. Inputs/Outputs and parameter management

3. C code generation options

4. Generate plugin solver code

5. View generated C code

CRTConnector package

The CRTConnector package is a collection of procedures for manually generating and compiling VI-grade's ANSI-C
code from MapleSim models, based on the model's algebraic equations and Dynamic System objects.

For information about the CRTConnector package, enter ?CRTConnector at a prompt in a Maple worksheet.

1.2 Opening the VI-CarRealTime Plugin Solver Generation Template
To open the VI-CarRealTime Plugin Solver Generation template

1. With your model open in MapleSim, click Templates () in the main toolbar and select the VI-CarRealTime
Plugin Solver Generation template.

2. In the Attachment field, provide a worksheet name.

3. Click Create Attachment.

The VI-CarRealTime Plugin Solver Generation template opens in a Maple worksheet. Your MapleSim model is
displayed in the Subsystem Selection window. The Main drop-down list in the toolbar shows all of the subsystems
in your model.

1.3 Using the Template
The MapleSim Connector for VI-CarRealTime provides a VI-CarRealTime Plugin Solver Generation template in
the form of a Maple worksheet for manipulating and exporting MapleSim subsystems. This template contains pre-built
embedded components that allow you to generate C code from a MapleSim subsystem.

With this template, you can define inputs and outputs for the system, set the level of code optimization, generate the
source code, and choose the format of the resulting C code and library code. You can use any Maple commands to
perform task analysis, assign model equations to a variable, group inputs and outputs, and define additional input and
output ports for variables.

Note: C code generation now handles all systems modeled in MapleSim, including hybrid systems with defined signal
input (RealInput) and signal output (RealOutput) ports.

Example models are available in the VI-CarRealTime Examples palette in MapleSim.

1

Step 1: Subsystem Selection

This part of the template identifies the subsystem modeling components that you want to generate C code for. Since
VI-CarRealTime only supports data signals, properties on acausal connectors such as mechanical flanges and electrical
pins, must be converted to signals using the appropriate ports.

To connect a subsystem to modeling components outside of its boundary, you add subsystem ports to your model. A
subsystem port is an extension of a component port in your subsystem. The resulting signals can then be directed as
inputs and outputs for the C code files. By creating a subsystem you not only improve the visual layout of a system in
model workspace but you also prepare the model for export.

Note: For connectors you must use signal components since acausal connectors cannot be converted to a signal.

You can select which subsystems from your model you want to create C code for.

To select a subsystem

1. From Main, select a subsystem in your model.

2. Select your version of VI-CarRealTime from the VI-CarRealTime Version list.

3. Click Load Selected Subsystem.

The subsystem appears in the Subsystem Selection window. All defined input and output ports are loaded.

Step 2: Inputs/Outputs and Parameter Management

The Port and Parameter Management interface lets you customize, define, and assign parameter values to specific
ports. Subsystem components to which you assign the parameter inherit a parameter value defined at the subsystem
level.

Select either one of or both of the Generate external file for assigning parameters and Generate external file for
assigning initial conditions options to generate external files for assigning parameters and initial conditions. When
selected, a .params file (for assigning external parameters) and an .ics file (for assigning initial conditions) are generated
along with your C code. These files can be edited before running your model on VI-CarRealTime to see how different
parameters and initial conditions affect your model without having to regenerate the C code for your model.

2 • Getting Started

3 • Getting Started

After the subsystem is loaded you can group individual input and output variable elements into a vector array. Input
ports can include variable derivatives.

Note: If the parameters are not marked for export they will be numerically substituted.

Step 3: C Code Generation Options

The C code Generation Options settings specify the advanced options for the code generation process.

Solver Options

Select the fixed step solver by specifying the numerical solution method for the model equations during the code gen-
eration process.

Select one of the following options:

Euler: forward Euler method

RK2: second-order Runge-Kutta method

RK3: third-order Runge-Kutta method

RK4: fourth-order Runge-Kutta method

Implicit Euler: implicit Euler method

Optimization Options

Set the level of code optimization to specify whether equations are left in their implicit form or converted to an ordinary
differential equation (ODE) system during the code generation process. This option specifies the degree of simplification
applied to the model equations during the code generation process and eliminates redundant variables and equations
in the system.

Select one of the following options:

None (0): performs no optimization; the default equations are used in the generated code.

Partial (1, 2): removes redundant equations from the system.

Full (3): performs index reduction to reduce the system to an ODE system or a differential algebraic equation (DAE)
system of index 1, and removes redundant equations.

Constraint Handling Options

The Constraint Handling Options specify whether the constraints are satisfied in a DAE system by using constraint
projection in the generated C code. Use this option to improve the accuracy of a DAE system that has constraints. If
the constraint is not satisfied, the system result may deviate from the actual solution and could lead to an increase in
error at an exponential rate.

4 • Getting Started

Set the Maximum number of projection iterations to specify the maximum number of times that a projection is
permitted to iterate to obtain a more accurate solution.

Set the Error tolerance to specify the desirable error tolerance to achieve after the projection.

Select Apply projection during event iterations to interpolate iterations to obtain a more accurate solution.

Constraint projection is performed using the constraint projection routine in the External Model Interface as described
on The MathWorks™ web site to control the drift in the result of the DAE system.

Event Handling Options

The Event Handling Options specify whether the events are satisfied in a DAE system by using event projection in
the generated C code. Use this option to improve the accuracy of a DAE system with events. If the constraint is not
satisfied, the system result may deviate from the actual solution and could lead to an increase in error at an exponential
rate.

Set the Maximum number of event iterations to specify the maximum number of times that a projection is permitted
to iterate to obtain a more accurate solution.

Set the Width of event hysteresis band to specify the desirable error tolerance to achieve after the projection.

Event projection is performed using the event projection routine in the External Model Interface as described on The
MathWorks™ web site to control the drift in the result of the DAE system.

Baumgarte Constraint Stabilization

Select Apply Baumgarte constraint stabilization in order to apply Baumgarte constraint stabilization to your model.
When selected, you can enter values for the derivative gain (Alpha) and the proportional gain (Beta) that are appropriate
for your model.

Select Export Baumgarte parameters to add Alpha and Beta as parameters in the generated plugin solver code for
your model. This allows you to change the values of Alpha and Beta when using your plugin solver.

Baserate

The baserate specifies the rate at which the model runs (in seconds). Enter the value for the baserate in The rate at
which the model runs. Use this option to improve the accuracy of a DAE system with events. If the constraint is not
satisfied, the system result may deviate from the actual solution and could lead to an increase in error at an exponential
rate. Default is [0.001].

5 • Getting Started

If your baserate is smaller than the step size used in your VI-CarRealTime simulation, you must specify a value in
Number of internal steps so that:

(model baserate) ⋅ (number of internal steps) = VI-CarRealTime step size

Step 4: Generate Plugin Solver Code

Generating the plugin solver code creates temporary files for viewing purposes in a user defined directory.

To generate plugin solver code

1. Provide the following information for the location and name of the generated code:

• Target directory: Browse to or create the location for the generated C code files.

• VI-Grade CarRealTime installation directory: Browse to the installation directory for VI-CarRealTime.

• Visual C++ directory: Browse to the location of the Visual C++ directory on your computer.

• Model Name: Provide a name for the generated C code folder. This folder is a subdirectory of Target directory.
Within this folder three files are generated: the VI-CarRealTime interface C code, cMsimModel.h, and a batch
file to compile the source code.

2. Select either 32-bit or 64-bit for Target binary, depending on the version of VI-CarRealTime you have installed.

3. To generate the plugin solver code, click Generate Plugin Solver Code. The C code for the plugin solver is saved
in the C code folder.

4. To generate and compile the plugin solver code, click Generate and Compile Plugin Solver Code. In addition to
the C source code files, object files and a library file (.dll) are created and saved in the C code folder.

Step 5: View Generated C Code

Once the C code is generated, specific portions of the C code can be viewed:

VI-CarRealTime Interface C Code: Displays the code for implementation of the MapleSim Connector for VI-Car-
RealTime.

6 • Getting Started

MapleSim model: cMsimModel.c: Displays the code for implementation of the MapleSim model.

1.4 Viewing Examples
Within MapleSim there are some examples for you to view.

To view an example

1. Under the Libraries tab on the left side of the MapleSim window, expand the VI-CarRealTime Examples palette,
and then click the entry for the model that you want to view.

Note: Some models include additional documents, such as templates that display model equations or define custom
components.

2. Under the Project tab, expand the Attachments palette and then expand Documents. You can open any of these
documents by right-clicking its entry in the list and clicking View. After you add a template to a model, it will be
available from this list.

1.5 Example: Full Powertrain Model
In this example, you will generate C code for a simple powertrain model created in MapleSim.

To generate C code

1. From the VI-CarRealTime Examples palette, click the Full Powertrain example.

2. Click Templates () in the main toolbar. The Create Attachment for FullPowertrain window appears.

3. From the template list, select the VI-CarRealTime Plugin Solver Generation template.

4. In the Attachment field, enter Full Powertrain as the worksheet name.

5. Click Create Attachment. Your MapleSim model opens in Maple, using the selected template.

6. Select the FullPowertrain1 subsystem from the Main drop-down list in the toolbar above the model diagram.

7. Select your version of VI-CarRealTime from the VI-CarRealTime Version list.

8. ClickLoad Selected Subsystem. All of the template fields are populated with information specific to the subsystem
displayed in the model diagram. You can now specify which subsystem parameters will be kept as configurable
parameters in the generated block.

9. In the C Code Generation Options > Optimization Options section, set Level of code optimization to Full (3).
This option specifies the degree of simplification applied to the model equations during the code generation process,
and eliminates redundant variables and equations in the system.

10. In the Generate Plugin Solver Code section of the template, specify the Target directory, the VI-Grade CarRe-
alTime installation directory, the Visual C++ directory, and the Model Name.

11. Select either 32-Bit or 64-bit from the Target binary list.

12. Click Generate Plugin Solver Code. The files are created and saved in the C code folder.

Note: Generating a block may require a few minutes.

7 • Getting Started

2 Example: Generating the Plugin Solver Code for the Full
Powertrain Model
2.1 Generating the Plugin Solver Code for the Full Powertrain Model
Preparing a Model

In this example, you will perform the steps required to generate the plugin solver code using the Full Powertrain
model.

1. Open the Full Powertrain example.

2. Generate the MapleSim Connector for VI-CarRealTime template.

3. Define template settings.

4. Generate the plugin solver code.

To open the Full Powertrain example

1. In MapleSim, expand the VI-CarRealTime Examples palette.

2. Click the Full Powertrain example to open it.

To generate the MapleSim Connector for VI-CarRealTime template

1. If you have not already done so, open the Full Powertrain example found in the VI-CarRealTime Examples
palette.

2. Click Templates () in the main toolbar. The Create Attachment for FullPowertrain window appears.

3. From the list, select the VI-CarRealTime Plugin Solver Generation template.

4. In the Attachment field, enter Powertrain as the worksheet name.

5. Click Create Attachment. Your MapleSim model opens in Maple, using the selected template.

8

To define the template settings

1. Select the FullPowertrain1 subsystem from the Main drop-down list in the toolbar above the model diagram.

2. Select your version of VI-CarRealTime from the VI-CarRealTime Version list.

3. ClickLoad Selected Subsystem. All of the template fields are populated with information specific to the subsystem
displayed in the model diagram.

4. In the Inputs/Outputs and Parameter Management section, specify which subsystem parameters to keep as
configurable parameters in the generated block. The following assignments should be made:

• Inputs: The table below shows the appropriate input variable assignments.

Table 2.1: Input variable assignments for the Full Powertrain model.

Port Grouping NameInput Variables
"OUTPUT_FV_Wheel_L2_Omega"`Main.FullPowertrain1.Wheel_L2_Omega`(t)
"OUTPUT_FV_Wheel_R2_Omega"`Main.FullPowertrain1.Wheel_R2_Omega`(t)
"OUTPUT_FV_driver_demands_throttle"`Main.FullPowertrain1.driver_demands_throttle`(t)

• Outputs: The table below shows the appropriate output variable assignments.

Table 2.2: Output variable assignments for the Full Powertrain model.

Port Grouping NameOutput Variables
"INPUT_FV_mdrv_L1"`Main.FullPowertrain1.INPUT_FV_mdrv_L1`(t)
"INPUT_FV_mdrv_L2"`Main.FullPowertrain1.INPUT_FV_mdrv_L2`(t)
"INPUT_FV_mdrv_R1"`Main.FullPowertrain1.INPUT_FV_mdrv_R1`(t)
"INPUT_FV_mdrv_R2"`Main.FullPowertrain1.INPUT_FV_mdrv_R2`(t)
"INPUT_FV_engine_max_trq"`Main.FullPowertrain1.engine_max_trq`(t)
"INPUT_FV_engine_min_trq"`Main.FullPowertrain1.engine_min_trq`(t)
"INPUT_FV_engine_omega"`Main.FullPowertrain1.engine_omega`(t)
"INPUT_FV_engine_trq"`Main.FullPowertrain1.engine_trq`(t)
"INPUT_FV_transmission_ratio"`Main.FullPowertrain1.transmission_ratio`(t)

9 • Example: Generating the Plugin Solver Code for the Full Powertrain Model

5. In the C Code Generation Options section, set the following options:

SettingC Code Generation Options

Euler

Solver Options

• Fixed step solver

3

Optimization Options

• Level of code optimization (0=None, 3=Full)

3

0.1e-4

Constraint Handling Options

• Maximum number of projection iterations

• Error tolerance

• Apply projection during event iterations

10

0.1e-9

Event Handling Options

• Maximum number of event iterations

• Width of event hysteresis band

Baumgarte Constraint Stabilization

• Apply Baumgarte constraint stabilization

0.1e-2

1

Baserate

• The rate at which the model runs

• Number of internal steps

6. In the Generate Plugin Solver Code section of the template, specify the Target directory, the VI-CarRealTime
installation directory, the Visual C++ directory, and the Model Name.
The following figure gives an example of some of these settings. Note that the locations of your VI-CarRealTime
installation directory and your Visual C++ directory depend on the operating system you are running (XP, Vista,
or Windows 7), its version (32- or 64-bit), and the version of VI-CarRealTime.

10 • Example: Generating the Plugin Solver Code for the Full Powertrain Model

To generate the plugin solver code

1. Select either 32-bit or 64-bit for Target binary, depending on the version of VI-CarRealTime you have installed.

2. Click Generate Plugin Solver Code to generate the C code source files. The C source files are created along with
a batch file that you can use to compile the source files.

3. Click Generate and Compile Plugin Solver Code to generate the C code source files and then compile them.

The generated files are stored in a subdirectory of the Target directory. The name of the subdirectory is the same as
the Model Name. For example, if you entered C:\MS_CRT_models for the Target directory and FullPower-
train1 for the Model Name, then your C code files are saved in a directory called C:\MS_CRT_models\Full-
Powertrain1.

You can view the generated plugin solver code files (the VI-CarRealTime Interface C Code and cMsimModel.c) in
the View C Code section of the template.

Note: Generating a block may require a few minutes.

11 • Example: Generating the Plugin Solver Code for the Full Powertrain Model

3 Using Your Plugin Solver in VI-CarRealTime
This chapter describes how to import your powertrain model into VI-CarRealTime. You will be using the Full
Powertrain plugin solver that you generated in Generating the Plugin Solver Code for the Full Powertrain
Model (page 8) and the complete vehicle model example that comes with VI-CarRealTime.

Note: For a complete description of VI-CarRealTime, see the VI-Grade VI-CarRealTime Help.

3.1 Preparing aMapleSimModel to Run as a NewVI-CarRealTime Project
The preparation procedure consists of the following steps:

1. Loading the complete vehicle model example into VI-CarRealTime (page 12)

2. Disabling the example model's powertrain (page 12)

3. Enabling your powertrain plugin solver (page 13)

4. Configuring the road environment (page 14)

5. Running the simulation (page 15)

3.2 Loading the complete vehicle model example into VI-CarRealTime
The first step in using your powertrain model is to load a vehicle model into VI-CarRealTime. You will be using the
complete vehicle model example that comes with VI-CarRealTime.

To load the complete vehicle model example

1. Start VI-CarRealTime.

2. If you are not already in Build mode, click the Build icon () to enter Build mode.

3. From the Build menu, select Load Model....

4. In the Select Filewindow, select themdids://carrealtime_shared/ database from theRegistered Databases section.

5. Select the VI_CRT_Demo_compl.xml model from the list of files.

6. Click Open.

The complete vehicle demo model is now loaded into VI-CarRealTime. This example comes with its own powertrain
(that is, engine, clutch, and gearbox systems). Before you can use your powertrain, you have to disable the built-in
systems.

3.3 Disabling the example model's powertrain
To disable the example model's powertrain

1. From the treeview, select VI_CRT_Demo_compl.

2. Under the Properties tab, select system_parameters.
The system_parameters page contains information about your model vehicle setup, components, and general system
settings. This is where you will turn off the built-in engine, clutch, and gearbox solvers.

3. Find the names of the following parameters, and set their values to 0 (zero):

ValueParameter Name
0built_in_clutch_active
0built_in_engine_active
0built_in_gearbox_active

Your system_parameters page should look like the following figure.

12

The built-in powertrain is disabled. You are now ready to configure VI-CarRealTime to use the custom powertrain
solver that you developed.

3.4 Enabling your powertrain plugin solver
To enable your custom powertrain solver in VI-CarRealTime

1. Under the Properties tab, select plugin.

2. Set the value of the active parameter to 1.

3. Click the Value field for the library parameter, and enter the location of the plugin solver library (that is, the dll
file) that you generated from your powertrain model.

The custom solver library is found in the directory that the VI-CarRealTime Plugin Solver Generation template
stored the generated C code files. For example, if you entered C:\MS_CRT_models for the Target directory
and FullPowertrain1 for the Model Name in the template, then your C code files are in C:\MS_CRT_mod-
els\FullPowertrain1 directory, and your custom library is the file named FullPowertrain1.dll in
that directory. In this case you would enter C:\MS_CRT_models\FullPowertrain1\FullPower-
train1.dll in the library field. The following figure illustrates this.

4. Click Apply.

Your powertrain model is now configured as the plugin solver for the vehicle model.

13 • Using Your Plugin Solver in VI-CarRealTime

3.5 Configuring the road environment
To configure the road environment for your model

1. Click the Test icon () to enter Test Mode.

2. From the Events treeview, open Events, and then open ADAMSCar. From here, select DrivingMachine.

3. From the fingerprint treeview, open fingerprint_1, and then select VI_CRT_Demo_compl_dm.

4. Click the open file icon () next to the Driving Machine File input field.

5. In the Select File window, select the chicane_R100_25.xml file, and then click Open.

Note: If the chicane_R100_25.xml file is not available, select the mdids://carrealtime_shared/ database
from the Registered Databases section. This also applies for the Road Data File and the Road Graphics File.

6. Click the open file icon () next to the Road Data File input field.

7. In the Select File window, select the chicane_R100.rdf file, and then click Open.

8. Click the open file icon () next to the Road Graphics File input field.

9. In the Select File window, select the chicane_R100.obj file, and then click Open.

10. In the Solver Settings section, enter the following values:

• Integration Time Step: 0.001

• Output Time Step: 0.01

• Integrator: Euler

• Mode of Simulation: live animation

The following figure illustrates how your simulation should be configured.

14 • Using Your Plugin Solver in VI-CarRealTime

3.6 Running the simulation
To run the simulation using your custom powertrain

Click the Run icon () in the VI-CarRealTime menu bar. Alternatively, from Test, select Run Selected Events.

The VI.PTW (VI-CarRealTime Python Task Window) opens, followed by the VI-Animator window (see the fol-
lowing figure). Your simulation starts automatically.

15 • Using Your Plugin Solver in VI-CarRealTime

Note: If the simulation does not behave as expected (for example, it does not look as though the simulation is using
your custom powertrain), the messages in the VI.PTW (VI-CarRealTime Python Task Window) may indicate why
the simulation failed. For example, if you did not set the simulation to use your plugin solver properly, you would see
a warning message stating that there were problems initializing the user library (see the following figure).

16 • Using Your Plugin Solver in VI-CarRealTime

Index
C
C Code Generation Options, 4

Baserate Options, 5
Baumgarte Constraint Stabilization Options, 5
Constraint Handling Options, 4
Event Handling Options, 5
Optimization Options, 4
Solver Options, 4

E
Examples

Preparing a MapleSim Plugin Solver to Run in a New
VI-CarRealTime Project, 12
Simple Powertrain model, 7
Viewing Examples, 7

G
Generate

C code, 6

P
Port and Parameter Management, 2
Preparing a model, 8

S
Simple Powertrain, 8
Subsystem Selection, 2

T
Templates, 1

V
VI-CarRealTime Examples Palette, 1

17

	Getting Started with the MapleSim Connector for VI-CarRealTime
	Contents
	Introduction
	1 Getting Started
	1.1 VI-CarRealTime ANSI-C Code Generation Steps
	CRTConnector package

	1.2 Opening the VI-CarRealTime Plugin Solver Generation Template
	1.3 Using the Template
	Step 1: Subsystem Selection
	Step 2: Inputs/Outputs and Parameter Management
	Step 3: C Code Generation Options
	Solver Options
	Optimization Options
	Constraint Handling Options
	Event Handling Options
	Baumgarte Constraint Stabilization
	Baserate

	Step 4: Generate Plugin Solver Code
	Step 5: View Generated C Code

	1.4 Viewing Examples
	1.5 Example: Full Powertrain Model

	2 Example: Generating the Plugin Solver Code for the Full Powertrain Model
	2.1 Generating the Plugin Solver Code for the Full Powertrain Model
	Preparing a Model

	3 Using Your Plugin Solver in VI-CarRealTime
	3.1 Preparing a MapleSim Model to Run as a New VI-CarRealTime Project
	3.2 Loading the complete vehicle model example into VI-CarRealTime
	3.3 Disabling the example model's powertrain
	3.4 Enabling your powertrain plugin solver
	3.5 Configuring the road environment
	3.6 Running the simulation

	Index

