Getting Started with the MapleSim
Connector

Copyright © Maplesoft, a division of Waterloo Maple Inc.
2014

Getting Started with the MapleSim Connector

Copyright
Maplesoft, Maple, and MapleSim are all trademarks of Waterloo Maple Inc.

© Maplesoft, a division of Waterloo Maple Inc. 2009-2014. All rights reserved.

No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means — electronic, mechanical, photo-
copying, recording, or otherwise. Information in this document is subject to change without notice and does not represent a commitment on the part
of the vendor. The software described in this document is furnished under a license agreement and may be used or copied only in accordance with
the agreement. It is against the law to copy the software on any medium except as specifically allowed in the agreement.

Macintosh is a trademark of Apple Inc., registered in the U.S. and other countries.
MATLAB and Simulink are registered trademarks of The MathWorks, Inc.

Microsoft, Windows, and Visual Studio are registered trademarks of Microsoft Corporation.
Linux is a registered trademark of Linus Torvalds.

All other trademarks are the property of their respective owners.

This document was produced using Maple and DocBook.

Contents

FITE o T4 (D To73 T) R PP v
L€ T8V P -V 1<« PPN 1
1.1 Setting Up the MapleSim CONNECIOTiuueiineieeiei et eie et et e e eae et e et e et eeaaeaeaereaasnarrneerasenns 1
B € (ST = (<] PP 1
1.3 Using the Simulink® Component Block Generation Templatecc.oeivviiniiiiiiiiiiiieieeieeeieaen, 1
SUDSYSTEM PIEPATAtIONiveiiniii ettt et et et et e et e e e et e et e et e e e aae e st e eaa e et e et e et esneeeneraneeanees 2
SUDSYSIEM SCIECIIONiitiiteii et et et et et e et e et e et e et e et e et et e et e e b e eaa e et e et e et eaaeeaneeaneenneees 2

Port and Parameter ManagemEntcvueiuneiineiieiieeieei et et et e et eaieeateetne et eeaeaneanersneeaneenesenes 2
S-FUNCHON OPHIONS ...uittiitiiieiiie it et et e et et et et e e e et e e s e et e et e et e aaeeaneeaneeaneaaeanasnaasnersneesneannns 3
GENETALE S-FUNCLION ..eitti ittt ettt et et et e et e ettt et et e e e eeeinaees 5
VIEW S-FUINCLHION ..t ettt et e et et et ettt e e e e e e 5

1.4 Viewing MapleSim Connector EXAmPIEsccouiiiuiiiiiiiiiieii e et e e e e e e e eaanas 5
1.5 Example: RLC Circuit MOELuiveiiiiiiieie et e e e e e et e et e e e et e e e eaneeens 6
1.6 Preparing @ Model fOr EXPOTToouuiiiiiiiiii e e e e e e e e e et e et e et e et e aeeaens 7
Converting the Model to @ SUDSYSEEIMiuuiiiiiiieiie e e e e e e e e e e eeens 7
Defining Subsystem INputs and OULPULSivueieniiiiiiiiieiie e e e e e et e e e e e et e e eaneeaneaaneaanes 8
Define and Assign Subsystem Parametersviiuiiiniiiiii e e e e e e 12
Exporting Your Model Using the Simulink® Component Block Generation Templatec.......... 13
Implement the S-Function Block in SImulink®cooouiiiiiiiiiiiiiiii e, 13

2 Creating and Exporting Mathematical Models in Mapleccooviiiiiiiiiiiiiiiiii e e 15
2.1 Creating and Exporting a DynamicSystems Object Programmaticallyc..coeiiviiiiiiiiiiiniiniininns 15
2.2 EXAMPIE: DC MOTOT ...uiiniiiiieii et e et et e et e e e e e e et e et e et e e eaae e s e eaneea e et e aa e snaanaasneeanns 16
£ [PRSP PRRPN 19

il

Introduction

The MapleSim™ Connector provides all of the tools you need to prepare and export your dynamic systems models to
Simulink® as S-function blocks. You can create a model in MapleSim, simplify it in Maple™ by using an extensive
range of analytical tools, and then generate an S-function block that you can incorporate into your Simulink® toolchain.

You can also use these tools for exporting mathematical models that you have created from first principles in Maple
as S-functions.

Furthermore, various options allow you to use the C code generation feature in Maple to create code libraries of your
MapleSim models for implementation in other applications.

Features of this toolbox include:

* Maple templates, which provide an intuitive user interface for optimizing your MapleSim model, and then generate
an S-function in Simulink®.

* A range of examples illustrating how to prepare and export your models.

A direct interface between Maple and Simulink® allows you to generate and test an S-function block as you develop
the model.

* Commands for developing S-functions of mathematical models from first principles in the Maple environment and
examples to illustrate how to do it.

+ Access to commands in the MapleSimConnector and DynamicSystems packages in Maple for developing automated
applications to generate S-functions.

Scope of Model Support

MapleSim is a very comprehensive modeling tool where it is possible to create models that could go beyond the scope
of this MapleSim Connector release. In general, the MapleSim Connector supports systems of any complexity, including
systems of DAEs of any index, in any mix of domains.

System Requirements

For installation instructions and a complete list of system requirements, see the Install.html file on the product disc.

Adding External Libraries to Your Search Path

You can export a model that uses an external library as part of the model to an S-function block. In order to do this,
you first need to add the directory that contains the external library file (that is, the .dll or .so file) to your search path.
This involves appending the external library directory to either your PATH environment variable (for Windows®) or
your LD LIBRARY PATH environment variable (for Linux® and Macintosh®).

To add an external library directory to your search path

1. Determine the location of the external library directory.

Note: This is the directory that contains the .dll file (Windows) or the .so file (Linux or Macintosh) that is used in
your model.

2. Add the library directory found in step 1 to the appropriate environment variable for your operating system.
* For Windows, add the library directory to your PATH environment variable.
» For Linux and Macintosh, add the library directory to your LD LIBRARY PATH environment variable.

Consult the help for your operating system for instructions on how to edit these environment variables.

v

Introduction

3. Restart your computer.

1 Getting Started
1.1 Setting Up the MapleSim Connector

To generate an S-function block and have Maple communicate with MATLAB® you have to establish a connection
with MATLAB®.

To set up the MapleSim Connector
1. Start Maple.
2. Enter the following command to establish a connection with MATLAB®.

> Matlab| evalM (" simulink”)

3. A MATLAB® command window opens and the connection is established. If the window does not open, follow the
instructions in the Matlab/setup help page in the Maple help system to configure the connection.

4. Next, set up the MATLAB® mex compiler. Go to the MATLAB® command window and enter the following setup
command:

» mex —-setup
Please choose your compiler for building external interface {HMEX) files:

Would you like mex to locate installed compilers [y]/n?

5. Follow the instructions to choose a local C compiler that supports ANSI (American National Standards Institute)
C code. See the MapleSimConnector,setup help page for more information.

You are now ready to use the MapleSim Connector.

1.2 Getting Help

In Maple, enter ?MapleSimConnector at a prompt in a worksheet.

1.3 Using the Simulink® Component Block Generation Template

The MapleSim Connector provides a Simulink® Component Block Generation template in the form of a Maple
worksheet for manipulating and exporting MapleSim subsystems. This template contains pre-built embedded components
that allow you to generate S-function or C code from a MapleSim subsystem, export the subsystem as a Simulink®
block, and save the source code.

Using this template, you can define inputs and outputs for the system, set the level of code optimization, chose the
format of the resulting S-function, and generate the source code, library code, block script, or Simulink® block. You
can use any Maple commands to perform task analysis, assign model equations to a variable, group inputs and outputs
to a single vector and define additional input and output ports for variables.

Note: Code generation now handles all systems modeled in MapleSim, including hybrid systems with defined signal
input (Reallnput) and signal output (RealOutput) ports.

The S-Function Block Generation consists of the following steps:
* Subsystem Preparation

* Subsystem Selection

» Port and Parameter Management

* S-Function Options

2« QGetting Started

¢ Generate S-Function
¢ View S-Function
Subsystem Preparation

Convert your model or part of your model into a subsystem. This identifies the set of modeling components that you
want to export as a block component. Since Simulink® only supports data signals, properties on acausal connectors
such as mechanical flanges and electrical pins, must be converted to signals using the appropriate ports.

To connect a subsystem to modeling components outside of its boundary, you add subsystem ports. A subsystem port
is an extension of a component port in your subsystem. The resulting signals can then be directed as inputs and outputs
for MapleSim™ Connector Template.

Note: For connectors you must use signal components, since acausal connectors can not be converted to a signal.

By creating a subsystem you not only improve the visual layout of a system in Model Workspace but also prepare
the model for export. The following examples in this section, show you how to group all of the components into a
subsystem.

Subsystem Selection

You can select which subsystems from your model you want to export to a Simulink® block. After a subsystem is se-
lected, click Load Selected Subsystem. All defined input and output ports are loaded.

Port and Parameter Management

Port and Parameter Management lets you customize, define and assign parameter values to specific ports. Subsystem
components to which you assign the parameter inherit a parameter value defined at the subsystem level. After the
subsystem is loaded you can group individual input and output variable elements into a vector array, and add additional
input and output ports for customized parameter values. Input ports can include variable derivatives, and output ports
can include subsystem state variables.

Note: If the parameters are not marked for export they will be numerically substituted.
The following selections specify the input ports, output ports, and states for generating Simulink® blocks.

Input Ports:

Input Variables Part Grouping Mame Change Row

[] aroup all inputs into a single weckor [] Add additional inputs For required input wariable derivatives

Select Group all inputs into a single vector to create a single 'vector' input port for all of the input signals instead of
individual ports. The order of the inputs are the same as given in the S-function mask window.

Select Add additional inputs for required input variable derivatives to specify calculated derivative values instead
of numerical approximations.

Output Ports:

Cukput Yariables Port Grouping Mame Change Row

[Group all autputs into a single weckor] Add an additional output part For subsystem state variables

3 < Getting Started

Select Group all outputs into a single vector to define outputs as an S-Function 'mask’.

Select Add an additional output port for subsystem state variables to add extra output ports for the state variables.

Parameters:

I Togale Export Colurmn J

Parameters Value Expart Updated Row

: ||

|:| Group all parameters inko a single vector |:| Generate m-scripk for assigning parameters

Select Group all parameters into a single vector to to create a single parameter 'vector' for all of the parameters in
the S-function. If not selected, the S-function mask will contain one parameter input box for each of the S-function
parameters.

Select Generate m-script for assigning parameters to generate an initialization m-file with the system parameters.

Press Toggle Export Column to toggle selected/unselected parameters for export.

S-Function Options
These settings specify the advanced options for the code generation process.
Optimization Options

Set the level of code optimization to specify whether equations are left in their implicit form or converted to an ordinary
differential equation (ODE) system during the code generation process. This option specifies the degree of simplification
applied to the model equations during the code generation process and eliminates redundant variables and equations
in the system.

Levvel of code optimization {0=hkone, 3=Full);

(% I i

Select one of the following options:
None (0): no optimization is performed; the default equations will be used in the generated code.
Partial (1, 2): removes redundant equations from the system.

Full (3): performs index reduction to reduce the system to an ODE system or a differential algebraic equation (DAE)
system of index 1, and removes redundant equations.

Constraint Handling Options

The Constraint Handling Options area specifies whether the constraints are satisfied in a DAE system by using
constraint projection in the generated Simulink® block. Use this option to improve the accuracy of a DAE system that
has constraints. If the constraint is not satisfied, the system result may deviate from the actual solution and could lead
to an increase in error at an exponential rate.

Maxiniuni number of projection ikerations:
Error kolerance:

Apply projection during event ikerations

4 « Getting Started

Set the Maximum number of projection iterations to specify the maximum number of times that a projection is
permitted to iterate to obtain a more accurate solution.

Set the Error tolerance to specify the desirable error tolerance to achieve after the projection.
Select Apply projection during event iterations to interpolate iterations to obtain a more accurate solution.

Constraint projection is performed using the constraint projection routine in the External Model Interface as described
on The MathWorks™ web site to control the drift in the result of the DAE system.

Event Handling Options

The Event Handling Options area specifies whether the events are satisfied in a DAE system by using event projection
in the generated Simulink® block. Use this option to improve the accuracy of a DAE system with events. If the constraint
is not satisfied, the system result may deviate from the actual solution and could lead to an increase in error at an expo-
nential rate.

Maximum number of event iterations: | 10
width of ewent hysteresis band: [0, 12-9

[] &ptimize For use with fixed-step integrators

Set the Maximum number of event iterations to specify the maximum number of times that a projection is permitted
to iterate to obtain a more accurate solution.

Set the Width of event hysterias band to specify the desirable error tolerance to achieve after the projection.

Select Optimize for use with fixed-step integrators to optimize the event iterations as a function of hysterias bandwidth.

Baumgarte Constraint Stabilization

The Baumgarte constraint stabilization method stabilizes the position constraint equations, by combining the position,
velocity, and acceleration constraints into a single expression. By integrating the linear equation in terms of the accel-
eration, the Baumgarte parameters, alpha and beta, act to stabilize the constraints at the position level.

Baumgarte Constraint Stabilization:

Apply Baumgarte constraint skabilization [] Export Baumgarte parameters

Apply Baumgarte constraint stabilization: Apply the Baumgarte constraint stabilization.
Export Baumgarte parameters: Add Alpha and Beta as parameters in the generated code.
Alpha: Set the derivative gain for Baumgarte constraint stabilization.

Beta: Set the proportional gain for Baumgarte constraint stabilization.

Discretization

Select Export as a discrete model (no continuous states) to apply discretization to your model. When selected, you
can select a solver type from one of the following options:

* Euler: forward Euler method

* RK2: second-order Runge-Kutta method

5 < Getting Started

* RKS3: third-order Runge-Kutta method
* RK4: fourth-order Runge-Kutta method

* Implicit Euler: implicit Euler method

In this section, you can also set the Discrete Timestep (in seconds) for the discretization.
V| Export as a discrete model (no continuous skakes)

Embedded salver: Euler REZ REZ RE4 @) Implicit Euler

Discrete Tirmestep

Generate S-Function

Target directory;

|C:/temp | | Browse

Block Name:

|RLC |

| Generate S-Function Code (no Canmpile) | | Generate and Compile S5-Function |

Provide a name and specify the location for the generated file.
To generate an S-Function block without a Simulink® connection, click Generate S-Function (no Compile).
To generate an S-Function block, click Generate and Compile S-Function.

Note: If your model contains an external library, then you must add the directory that contains the external library to
your search path. See Adding External Libraries to Your Search Path (page iv) for instructions on how to do this.

View S-Function

After you generate the S-Function code and create the block a MATLAB® command window opens and the block
with any of the following specified parameters is generated in Simulink®:

* Block Generation Script
* CCode

* Parameter Script

1.4 Viewing MapleSim Connector Examples

Toolbox examples are available in the MapleSim Connector Examples palette in MapleSim.
Each example includes a code generation template in its Attachments palette.

To view an example:

1. Expand the MapleSim Connector Examples palette on the left side of the MapleSim window, and click the entry
for the model that you want to view.

2. In the Project tab, expand the Attachments palette and then expand Documents.

6 < Getting Started

3. Right-click (Control-click for Macintosh) Simulink® Component Block Generation and select View. The template
opens in Maple.

Some models include additional documents, such as templates that display model equations or define custom components.
You can open any of these documents by right-clicking its entry and selecting View.

1.5 Example: RLC Circuit Model

In this example, you will generate a Simulink® block from an RLC circuit model that was created in MapleSim.

Note: Before starting this tutorial, you must set up MATLAB® and the mex compiler in order to have the template
appear in the list. For more information, see the MapleSimConnector,setup help page for more information.

To generate an S-function block

1. In the MapleSim Connector Examples palette, select the RLC Parallel Circuit example.

2. Click Templates (@) in the Main Toolbar.
3. From the list, select Simulink® Component Block Generation.

4. In the Attachment field, enter RLC Circuit as the worksheet name and click Create Attachment. Your MapleSim
model opens in the Simulink® Component Block Generation template in Maple.

5. Using the navigation controls above the model, select Main > RLC. The RLC subsystem appears in the workspace.

6. Click Load Selected Subsystem. All of the template fields are populated with information specific to the RLC
subsystem.

Note: By default, all parameters in the model are kept as configurable parameters.

7. In the S-Function Option section, set the Level of code optimization option to Full (3).

8. In the Generate F-Function section, specify the location of generated files.

9. Click Generate and Compile S-Function to generate the S-function code and create the block.

Note: Generating a block may require a few minutes.

A MATLAB® command window opens and the block with the specified parameters is generated in Simulink®.

=] Library: Maple Sim_RLC
File Edit View Format Help

DsHS s ER|e <

InputSignal OwrtputSignal

Generated by

i
+
59| Mapiesim

MapleSim_RLC

Ready |100% |unlocked v

Double-clicking the block opens the mask that contains the symbolic parameters from the original model. This block
can now be connected with any compatible Simulink® blocks.

7 < Getting Started

1.6 Preparing a Model for Export

In this example, you will perform the steps required to prepare a slider-crank mechanism model and export it as an S-
function block:

1. Convert the slider-crank mechanism model to a subsystem.

2. Define subsystem inputs and outputs.

3. Define and assign subsystem parameters.

4. Export the model using the Simulink® Component Block Generation template.
5. Implement the S-function block in Simulink®.

Note: The following tutorial will take you through these steps in detail. Before starting this tutorial, you must set up
MATLAB® and the mex compiler. For more information, see the MapleSimConnector,setup help page for more in-
formation.

To open the slider-crank mechanism example

1. In MapleSim, under the Libraries tab, browse to the Examples > User's Guide Examples menu.

2. Open the Planar Slider-Crank Mechanism example in Chapter 6. The example appears in the Model Workspace.
Converting the Model to a Subsystem

By converting your entire model or part of your model into a subsystem, you identify which parts of the model that
you want to export. In this example, you will prepare the system for export by grouping all of the components into a
subsystem.

To convert the model to a subsystem

1. Using the selection tool (&) located above the Model Workspace, draw a box around all of the components in the
model.

Probe2

a
=]

1 phi
L] [] - o o o
by | » VBN N, T 4P
0 o £
L Crank ConnechingR odf

QP robel °

i 5

L] L]
o o

b

2. From the Edit menu, select Create Subsystem. The Create Subsystem dialog box appears.
3. Enter SliderCrank as the subsystem name.

4. Click OK. A SliderCrank subsystem block appears in the Model Workspace.

8 « Getting Started

S.l’p'de.'Cran.fr1

Defining Subsystem Inputs and Outputs

MapleSim uses a topological representation to connect interrelated components without having to consider how signals
flow between them, whereas traditional signal-flow modeling tools require explicitly defined system inputs and outputs.
Since Simulink® only supports data signals, properties on acausal ports, such as mechanical flanges and electrical
pins, must be converted to signals using the appropriate components. The resulting signals are directed as inputs and
outputs for the subsystem in MapleSim and for the S-function block.

Note: Currently, code generation is limited to subsystems with defined signal input (Real/lnput) and signal output
(RealOutput) ports.

In this example, you will convert the displacements of the slider and the joint between the crank and connecting rod
to output signals. The input signal needs to be converted to a torque that is applied to the revolute joint that represents
the crank shaft.

To convert the system signals

1. Double-click the subsystem block to view its contents. The broken line surrounding the components indicates the
subsystem boundary, which can be resized by clicking and dragging its sizing handles.

2. Delete the probes that are attached to the model.
3. On the left side of the MapleSim window, expand the Multibody palette and then expand the Sensors submenu.

4. Drag the Absolute Translation component to the Model Workspace and place it below the Prismatic Joint
component.

5. Right-click (Control-click for Macintosh®) the Absolute Translation component and select Rotate Counterclock-
wise.

6. From the Signal Blocks > Routing > Demultiplexers menu, drag a Real Demultiplexer component to the Model
Workspace and place it to the right of the Absolute Translation component.

L} n}

—cfn

DA &

7. To connect the Absolute Translation component to the model, click the frame b connector. The frame is highlighted
in green when you hover your pointer over it.

9 « Getting Started

- o

TS
=3
L
8. Draw a vertical line and click the connection line directly above the component. The sensor is connected to the rest

of the diagram.

L} n}

9. In the same way, connect the r output port (TMOutputP) of the Absolute Translation component to the demulti-
plexer Real input signal (u) port. This is the displacement signal from the sensor in x, y, and z coordinates. Since
the slider only moves along the x axis, the first coordinate needs to be an output signal.

=

10. Hover your pointer over the first demultiplexer port and click your mouse button once.

S

11. Drag your pointer to the subsystem boundary and then click the boundary once. A real output port is added to your
subsystem.

12. Add another Absolute Translation component above the Connecting Rod subsystem.

13. Right-click (Control-click for Macintosh) the Absolute Translation component and select Flip Vertically. Right-
click the Absolute Translation component again and seclect Rotate Clockwise.

14. Add a Real Demultiplexer component to the right of the sensor and connect the components as shown below.

10 + Getting Started

dv

ATS
2
TVEY
k4

_EQ F2 Fa 4(
R r] R
2 2" ComectingRod a

Note: Since the crank is moving in the x-y plane, you only need to output the first two signals.

You will now add a real input port to your subsystem to control the torque on the crank shaft.

15. From the 1-D Mechanical > Rotational > Torque Drivers menu, add a Torque component to the Model Workspace
and place it above the Fixed Frame component.

16. Connect the white flange of the Torque component to the white flange of the leftmost Revolute Joint.

|
=T

oS

LA
FAAS
FrLAE

17. Click the input port of the Torque component, then drag your pointer to the subsystem boundary and click the
boundary once. A real input port is added to your subsystem.

The complete subsystem appears below.

11 < Getting Started

FASS
FAE
Ly

ATS
2
vV Vy
k

AT
r dv
z v v

18. Click Main above the Model Workspace to browse to the top level of the model.

19. From the Signal Blocks > Sources > Real menu, drag a Constant source into the Model Workspace and connect
its output port to the input port of the SliderCrank subsystem as shown below.

const

RO4r
RI1

ROSE

RO

Slfa'o‘erCramf(1

20. Click Attach probe (,#%) above the Model Workspace and then click the top output port of the SliderCrank

subsystem.

21. Drag the probe to an empty location on the Model Workspace, and then click the workspace to position the probe.

2. In the same way, add probes to the other SliderCrank output ports as shown below.

const

Probe1
7 value
-
/,’
RI1 20 Probe2
value
RO, _
-Sa‘ﬁc:'erf,‘ran|lt1 T -
Tl OProbeS

value

12+ Getting Started

Define and Assign Subsystem Parameters

You can define custom parameters that can be used in expressions in your model to edit values more easily. To do so,
you define a parameter with a numeric value in the parameter editor. You can then assign that parameter as a variable
to the parameters of other components; those individual components will then inherit the numeric value of the parameter
defined in the parameter editor. By using this approach, you only need to change the value in the parameter editor to
change the parameter values for multiple components.

To edit parameters

1. While in the detailed view of the SliderCrank subsystem, click Parameters (%) above the Model Workspace.
The parameter editor appears.

2. In the New Parameter field, define a parameter called CrankL and press Enter.

3. Specify a default value of 1 and enter Length of the crank as the description.

4. In the second row of the table, define a parameter called ConRodL and press Enter.
5.

Specify a default value of 2 and enter Length of the connecting rod as the description.

SliderCrank subsystem default settings

MName Type Default Value Default Units Description
Crankl Feal (|1 Length of the crank
ConRaodL Feal v |2 Length of the connecting rod

6. Click Diagram (=2) to switch to the diagram view. The parameters are defined in the Parameters pane.

Inspectar | Settings | Ploks
MName | SliderCranis

Type 5Standalone Subsystem

¥ Parameters
CraniL 1

ConRodl |2

7. In the Model Workspace, select the Crank subsystem.

8. In the Parameters pane, change the length value (L) to CrankL. The Crank subsystem now inherits the numeric
value of CrankL that you defined.

Inspector | Settings | Plots

Name Crank
Type Link
¥ Parameters
L CrankL
9. Select the ConnectingRod subsystem and change its length value to ConRodL.

10. Click Main in the Navigation Toolbar above the workspace to navigate to the top level of the model.

You will include these parameter values in the model that you export. You are now ready to convert your model to an
S-function block.

13+ Getting Started

Exporting Your Model Using the Simulink® Component Block Generation Template

After preparing the model, you can use the Simulink® Component Block Generation template to set export options
and convert the model to an S-function block.

To export your model

1.
2.
3.

Click Templates (@) in the Main Toolbar.
From the list, select Simulink® Component Block Generation.

In the Attachments field, enter Slider Crank S-Function as the worksheet name and click Create Attachment.
The slider-crank subsystem opens in the Simulink® Component Block Generation template in Maple.

. From the drop-down menu above the model, select SliderCrank.

. In Step 1: Subsystem Selection of the template, click Load Selected Subsystem. All of the template fields are

populated with information specific to the subsystem.

. In the Setting Parameters section, in the Parameter Name list, select the ConRodL parameter that you defined

in the previous section.

Note: The Keep as Block Parameter box is selected by default. Also, by default, all input and output ports, and
parameters in the model are kept as configurable parameters.

7.

Click Generate and Compile S-Function to generate the S-function code and create the block. A MATLAB®
command window opens and the block with the specified parameters is generated in Simulink®.

=] Library: Maple Sim_SliderCrank [Ej[=]
File Edit WView Format Help

M EIRE Y

InputSignal OutputSignal

.; Generated by
o%®| Maplesim

MapleSim_5SliderCrank

Ready [100% Junlocked Y

Note: Generating a block may require a few minutes.

Implement the S-Function Block in Simulink®

In Simulink®, you can connect your block to other compatible blocks, specify initial conditions, and edit the component
parameter values.

14 + Getting Started

To implement the S-Function block

1. In Simulink®, double-click the block. The Parameter Mask dialog box appears. This dialog box displays the
ConRodL and CrankL parameters that you defined in MapleSim as a vector. The text in the dialog describes each
parameter in the order they appear in the vector. Initial conditions can also be changed in this dialog box.

Variable Definition

variable{s) in output vector:
MAPLE_y[I0] = RO1_1_(t)
MAPLE_y[1] = RO3_1_(t)
MAPLE_y[2] = RO4_1_(t)

Variable(s) in input vector:
MAPLE_u[0] = RII(Y)

Variable(s) for Initial Condition Vector:
MAPLE_x[0] = DFFSubsyslinst_theta_R1{t)
MAPLE_x[1] = DFFSubsyslinst_theta_R3(t)
MAPLE_ (2] = DFfSubsyslinst_theta_R1_dot(t)
MAPLE_x[3] = DFFSubsyslinst_theta_R3_dot(t)

Variable{s) in the parameter vector:
MAPLE_params{0] = ConRodL (default = 2)
MAPLE_params{1] = CrankL (default = 1)

Parameters

Initial Conditions:

[-7B5398163307448310, 0., 0., 0.]

Parameters:

[2.1]

[oK H Cancel ” Help

a Function Block Parameters: MapleSim_SliderC._ .. r¥|

SliderCrank (mask)

2. Click Help. This window provides a model description and information about the inputs, outputs, parameters, and

initial conditions.

3. All inputs and outputs are implemented as vector signals. To access individual signals in Simulink®, use a Mux
block for inputs and a Demux block for outputs.

2 Creating and Exporting Mathematical Models in Maple

In Maple, you can use commands from the DynamicSystems package to create a system from first principles. Maple
contains a data structure called a system object that encapsulates the properties of a dynamic system. This data structure
contains information, for example, the description of the system, and the description of the inputs. Five different types
of systems can be created.

« Differential equation or difference equation

* Transfer function as an expression

» Transfer function as a list of numerator and denominator coefficients
» State-space

* Zero, pole, gain

You can create a DynamicSystems object in a new worksheet and use commands from the MapleSimConnector
package to generate source code programmatically and save it as a MATLAB® .m file.

2.1 Creating and Exporting a DynamicSystems Object Programmatically

First, load the DynamicSystems and MapleSimConnector packages in the Maple worksheet.
> with(DynamicSystems) :

> with(MapleSimConnector) :

To create a system object from the transfer function , use the following command:

sz+a~s+b

> SYS = TransferFunction[1)
S +as+b

Transfer Function

continuous
sys:=| 1 output(s); 1 input(s) .1
inputvariable = [ul(s)]

| outputvariable = [V1(s)]

To view the details of the system, use the PrintSystem command.

15

16 + Creating and Exporting Mathematical Models in Maple

> PrintSystem(sys)

Transfer Function
continuous
1 output(s); 1 input(s)
inputvariable = [ul(s)] (2.2)
outputvariable = [y1(s)]
1

tf, = —7——
s2+as+b

1,1

The default values for the input names (111) and output names (1) have been used. Alternatively, during creation
of the system, different input and output names can be specified.

To define parameters values, use the following command:
>par=[a=1,b=1]
par:=[a=1,b=1] 2.3)

Finally, use the SBlock command to generate the source code and the SaveCode command to save the code as a .c file
and MATLAB® .m file.

> script := SBlock(sys, sys.—-inputvariable, sys.-outputvariable,
"MyTransferFunction", parameters = par) :

> SaveCode("MyTransferFunction", extension = "c", script[1],
interactive = true) :

> SaveCode("MyTransferFunction", extension = "m", script[2],
interactive = true) :

2.2 Example: DC Motor

Consider the classic example of the simplified DC motor. Using the built-in functionality of the DynamicSystems
package in Maple, you can define the system model, and then visualize and simulate it before saving the code.

This example demonstrates how to define, analyze, and export a system programmatically.

To define, visualize and simulate a DC motor

1. In a new Maple worksheet, define the system model.

17 + Creating and Exporting Mathematical Models in Maple

Differential Equation Model:

>eq1:=L(%i(t)]+Ri(t):v(t)—K[%9(t)J:
[d i
>eq2.—][dt2 o(1) +b[dt G(t)) +Kse(t) = Ki(t) :

Transfer Function Model:

> sys_de := DiffEquation([eql, eq2],[v(t)], [6(t), i(t)]) :
sys_tf .= TransferFunction(sys_de) :
sys_tfi-tf[1, 1]; sys_tfi-tf[2, 1];
K
JLS + (bL+JR) & + (KsL+K* + bR) s+ KsR

]sz+bs+Ks
JLS + (bL+JR) s+ (KsL+ K>+ bR) s+ KsR

2.4

In place of the above commands, you could use the PrintSystem command to display each part of the model.

2. Specify the parameters in the model.

Description | (Initial) Value | Units
Input Variables
Applied voltage | v=0 ‘ Vi
Output Variables
Motor shaft angular position 0=0 [rad]
Motor current i=0 [A]
Parameters
Moment of inertia of the motor J=0.1 [[kg- mZ]]
Damping of the mechanical system b=0.1 [N-m-s]
Electromotive force constant K=0.1 N-m
|
Motor coil resistance R=1 [«]
Motor coil inductance L=0.5 [H]
External Spring Load Constant Ks=0 [N-m]

> params = [J=0.1,b=0.1,K=0.1,R=1,L=0.5,Ks=0] :
> ics = [l'(O) =0,0(0) = O,D(G)(O) = O] :
3. Generate and save the source code as a .c file and MATLAB® .m file.

> (cSFcn, MBlock) := SBlock(sys, sys.-inputvariable, sys.-
outputvariable, "MyTransferFunction", parameters = params,
initialconditions = ics) :

18 + Creating and Exporting Mathematical Models in Maple

> MapleSimConnector.-SaveCode("MyTransferFunction", cSFcn,
extension = "c", interactive = true) :

> MapleSimConnector.-SaveCode("MyTransferFunction", MBlock,
extension = "m’", interactive = true) :

With the basic tools shown in this guide, you are now ready to use the MapleSim Connector to solve many system
design problems. Enter 2DynamicSystems and ?MapleSimConnector at a prompt in a Maple worksheet for more
information about the commands used in this guide.

Index
D

DynamicSystems object, 15
Creating and Exporting Programmatically, 15
Transfer function, 15

E

Exporting, iv
External Libraries, iv

G

Generate
External Libraries, 5
Generate S-Function, 5

Inputs and outputs, 8

MapleSim Connector Examples Palette, 5
Mathematical model, 15
MATLAB®
Setup, 1
Models using external libraries, iv

P

Port and Parameter Management, 2

S

S-Function Options, 3
Simulink®, 13
Subsystem
Creating, 7
Preparation, 2
Selection, 2
Subsystem parameters, 12
System object, 15

T

Templates
Simulink® Block Generation, 1, 13

Vv

View S-Function, 5

	Getting Started with the MapleSim Connector
	Contents
	Introduction
	1 Getting Started
	1.1 Setting Up the MapleSim Connector
	1.2 Getting Help
	1.3 Using the Simulink® Component Block Generation Template
	Subsystem Preparation
	Subsystem Selection
	Port and Parameter Management
	S-Function Options
	Optimization Options
	Constraint Handling Options
	Event Handling Options
	Baumgarte Constraint Stabilization
	Discretization

	Generate S-Function
	View S-Function

	1.4 Viewing MapleSim Connector Examples
	1.5 Example: RLC Circuit Model
	1.6 Preparing a Model for Export
	Converting the Model to a Subsystem
	Defining Subsystem Inputs and Outputs
	Define and Assign Subsystem Parameters
	Exporting Your Model Using the Simulink® Component Block Generation Template
	Implement the S-Function Block in Simulink®

	2 Creating and Exporting Mathematical Models in Maple
	2.1 Creating and Exporting a DynamicSystems Object Programmatically
	2.2 Example: DC Motor

	Index

