

restart :

Given is the function $h(x) = -\frac{x^3}{x^2 - 3}$, please analyse the function

▼ Function Analysis

▼ Definition

Let divide $h(x)$ into 2 functions, for the nominator and the denominator $g(x)$

$f := -x^3$:

$g := x^2 - 3$:

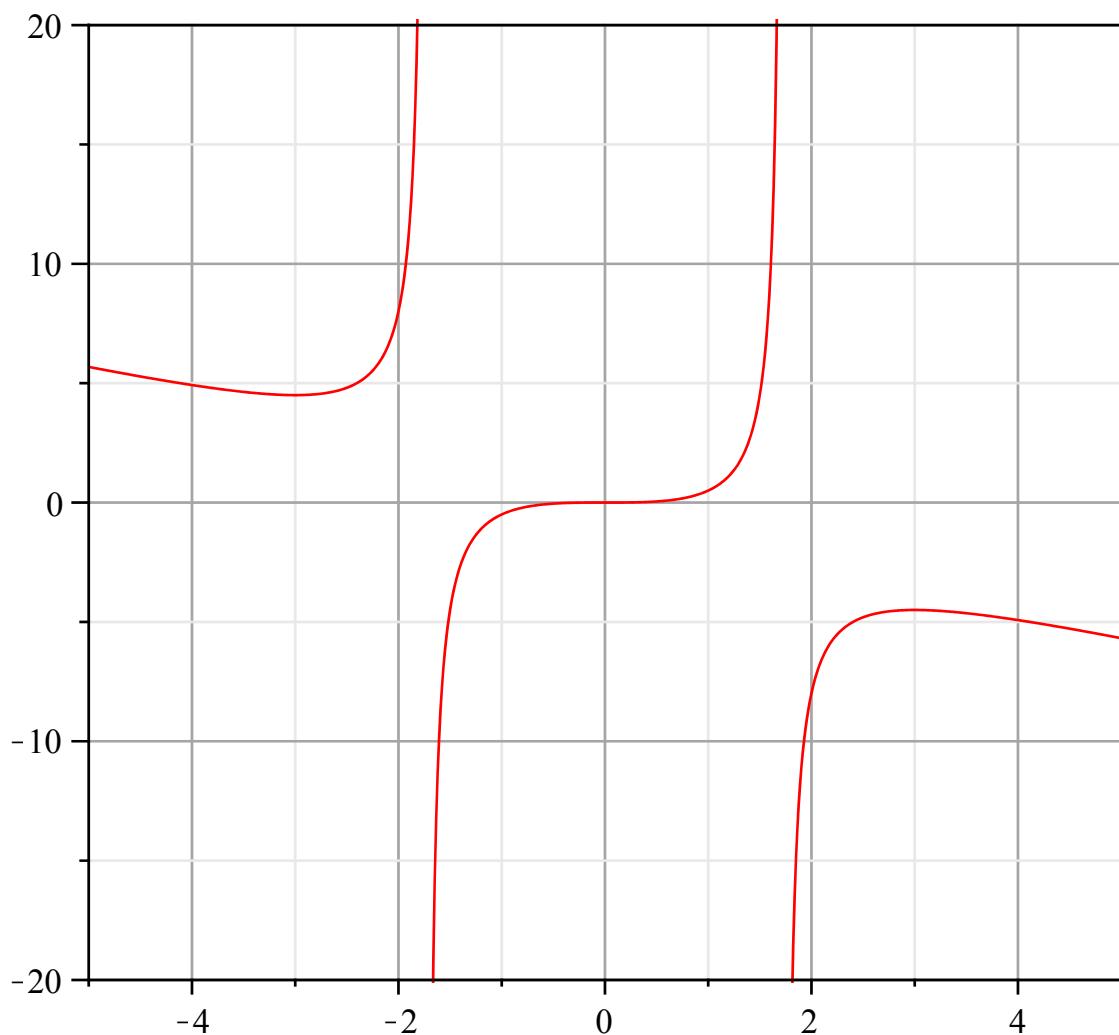
so $h(x)$ is simply the ratio:

$$h := \frac{f}{g}$$

$$-\frac{x^3}{x^2 - 3} \quad (1.1.1)$$

▼ Plot

`plot(h, x = -5 .. 5, y = -20 .. 20, discont = true)`



▼ Poles and Zeros

Zeros are the values of x for which $h(x) = 0$, that is when the nominator $f(x) = 0$
 $\text{solve}(h = 0, x)$

$$0, 0, 0 \quad (1.3.1)$$

Poles are values of x for which the denominator of $h(x)$, $g(x) = 0$ and hence $h(x)$ is NOT DEFINED!

These values of x are called "singularity point" and a vertical asymptote is suspected to be found there.

$\text{solve}(g = 0, x)$

$$\sqrt{3}, -\sqrt{3} \quad (1.3.2)$$

▼ Intersection with the vertical axis

Intersection with the y -axis happens at $x = 0$, hence
 $\text{eval}(h, x = 0) = 0$

▼ Derivative and Extremum Points

The derivative of $h(x)$ is simply $h' = -\frac{3x^2}{x^2 - 3} + \frac{2x^4}{(x^2 - 3)^2}$

It is better understood after a little simplification
 $simplify(expand(h'))$

$$-\frac{x^2(x^2 - 9)}{(x^2 - 3)^2} \quad (1.5.1)$$

and further treatment is to factor the nominator
 $factor((1.5.1))$

$$-\frac{x^2(x - 3)(x + 3)}{(x^2 - 3)^2} \quad (1.5.2)$$

The derivative equals zero at
 $solve(h' = 0, x)$

$$0, 0, 3, -3 \quad (1.5.3)$$

but be aware, as the last two point are also **singularity points** for the function of the derivative! The examine if an extermum point is a minima or maxima, the sign of the second derivative has to be examined:

$eval(h'', x = -3) = \frac{3}{2}$	positive second order derivative \Rightarrow minima
$eval(h'', x = 0) = 0$	Zero on second order derivative \Rightarrow Saddle point
$eval(h'', x = 3) = -\frac{3}{2}$	negative second order derivative \Rightarrow maxima

▼ Increasing and Decreasing Ranges

The function $h(x)$ is increasing, as long as the derivative is positive:
 $solve(h' > 0, x)$

$$\text{RealRange}(\text{Open}(-3), \text{Open}(-\sqrt{3})), \text{RealRange}(\text{Open}(-\sqrt{3}), \text{Open}(0)), \quad (1.6.1)$$

$$\text{RealRange}(\text{Open}(0), \text{Open}(\sqrt{3})), \text{RealRange}(\text{Open}(\sqrt{3}), \text{Open}(3))$$

The function $h(x)$ is decreasing, as long as the derivative is negaitive:
 $solve(h' < 0, x)$

$$\text{RealRange}(-\infty, \text{Open}(-3)), \text{RealRange}(\text{Open}(3), \infty) \quad (1.6.2)$$