
Getting Started with the MapleSim
Connector

Copyright © Maplesoft, a division of Waterloo Maple Inc.
2011

Getting Started with the MapleSim Connector
Copyright

Maplesoft, Maple, and MapleSim are all trademarks of Waterloo Maple Inc.

© Maplesoft, a division of Waterloo Maple Inc. 2009-2011. All rights reserved.
No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means — electronic, mechanical, photo-
copying, recording, or otherwise. Information in this document is subject to change without notice and does not represent a commitment on the part
of the vendor. The software described in this document is furnished under a license agreement and may be used or copied only in accordance with
the agreement. It is against the law to copy the software on any medium except as specifically allowed in the agreement.

Macintosh is a trademark of Apple Inc., registered in the U.S. and other countries.

MATLAB and Simulink are registered trademarks of The MathWorks, Inc.

All other trademarks are the property of their respective owners.

This document was produced using a special version of Maple and DocBook.

Printed in Canada

Contents
Introduction ... iv

1 Getting Started ... 1
1.1 Setting Up the MapleSim Connector ... 1
1.2 Getting Help .. 1
1.3 Using the Simulink Component Block Generation Template ... 1

Subsystem Preparation ... 2
Subsystem Selection .. 2
Port and Parameter Management .. 2
S-Function Options ... 3
Generate S-Function .. 4
View S-Function ... 4

1.4 Viewing MapleSim Connector Examples .. 5
1.5 Example: RLC Circuit Model ... 5
1.6 Preparing a Model for Export .. 6

Converting the Model to a Subsystem ... 6
Defining Subsystem Inputs and Outputs .. 7
Define and Assign Subsystem Parameters .. 10
Exporting Your Model Using the Simulink Component Block Generation Template 12
Implement the S-Function Block in Simulink ... 12

2 Creating and Exporting Mathematical Models in Maple ... 14
2.1 Using a Template to Generate an S-Function Block ... 14
2.2 Creating and Exporting a DynamicSystems Object Programmatically ... 15
2.3 Example: DC Motor .. 16

Index .. 19

iii

Introduction
The MapleSim™ Connector provides all of the tools you need to prepare and export your dynamic systems models to
Simulink® as S-function blocks. You can create a model in MapleSim, simplify it in Maple™ by using an extensive
range of analytical tools, and then generate an S-function block that you can incorporate into your Simulink toolchain.

You can also use these tools for exporting mathematical models that you have created from first principles in Maple
as S-functions.

Furthermore, various options allow you to use the C code generation feature in Maple to create code libraries of your
MapleSim models for implementation in other applications.

Features of this toolbox include:

• Maple templates, which provide an intuitive user interface for optimizing your MapleSim model, and then generate
an S-function in Simulink.

• A range of examples illustrating how to prepare and export your models.

• A direct interface between Maple and Simulink allows you to generate and test an S-function block as you develop
the model.

• Commands for developing S-functions of mathematical models from first principles in the Maple environment and
examples to illustrate how to do it.

• Access to commands in theMapleSimConnector andDynamicSystems packages in Maple for developing automated
applications to generate S-functions.

Scope of Model Support
MapleSim is a very comprehensive modeling tool where it is possible to create models that could go beyond the scope
of this MapleSim Connector release. In general, the MapleSim Connector supports systems of any complexity, including
systems of DAEs of any index, in any mix of domains, as long as they exhibit continuous behavior. Systems that contain
any type of discontinuity, including discrete transforms, switches, logic gates, relational and Boolean operations are
not supported by the current release of this product.

Apart from all of the engineering and signal components that are continuous, this product also supports lookup tables,
and custom components that do not use discontinuous operations such as piecewise functions.

System Requirements
For installation instructions and a complete list of system requirements, see the Install.html file on the product disc.

iv

1 Getting Started
1.1 Setting Up the MapleSim Connector
To generate an S-function block and have Maple communicate with MATLAB you have to establish a connection with
MATLAB.

Start Maple and enter the following command to establish a connection with MATLAB.

>

A MATLAB command window opens and the connection is established. If the window does not open, follow the in-
structions in the Matlab/setup help page in the Maple help system to configure the connection.

Next, set up the MATLAB mex compiler. Go to the MATLAB command window and enter the setup command.

Follow the instructions to choose a local C compiler that supports ANSI (American National Standards Institute) C
code.

See the MapleSimConnector,setup help page for more information.

You are now ready to use the MapleSim Connector.

1.2 Getting Help
In Maple, enter ?MapleSimConnector at a prompt in a worksheet.

1.3 Using the Simulink Component Block Generation Template
The MapleSim Connector provides a Simulink Component Block Generation template in the form of a Maple
worksheet for manipulating and exporting MapleSim subsystems. This template contains pre-built embedded components
that allow you to generate S-function or C code from a MapleSim subsystem, export the subsystem as a Simulink
block, and save the source code.

Using this template, you can define inputs and outputs for the system, set the level of code optimization, chose the
format of the resulting S-function, and generate the source code, library code, block script, or Simulink block. You
can use any Maple commands to perform task analysis, assign model equations to a variable, group inputs and outputs
to a single vector and define additional input and output ports for variables.

Note: Code generation now handles all systems modeled in MapleSim, including hybrid systems with defined signal
input (RealInput) and signal output (RealOutput) ports.

The S-Function Block Generation consists of the following steps:

• Subsystem Preparation

• Subsystem Selection

• Port and Parameter Management

• S-Function Options

• Generate S-Function

1

• View S-Function

Subsystem Preparation

Convert your model or part of your model into a subsystem. This identifies the set of modeling
components that you want to export as a block component. Since Simulink only supports data
signals, properties on acausal connectors such as mechanical flanges and electrical pins, must be
converted to signals using the appropriate ports.

To connect a subsystem to modeling components outside of its boundary, you add subsystem ports. A subsystem port
is an extension of a component port in your subsystem. The resulting signals can then be directed as inputs and outputs
for MapleSim™ Connector Template.

Note: For connectors you must use signal components, since acausal connectors can not be converted to a signal.

By creating a subsystem you not only improve the visual layout of a system in model workspace and but also prepare
the model for export. The following examples in this section, show you how to group all of the components into a
subsystem.

Subsystem Selection

You can select which subsystems from your model you want to export to a Simulink block. Once a
subsystem is selected, click Load Selected Subsystem. All defined input and output ports are loaded.

Port and Parameter Management

Port and Parameter Management lets you customize, define and assign parameter values to specific ports. Subsystem
components to which you assign the parameter, inherit a parameter value defined at the subsystem level. Once the
subsystem is loaded you can group individual input and output variable elements into a vector array, and add additional
input and output ports for customized parameter values. Input ports can include variable derivatives, and output ports
can include subsystem state variables.

Note: If the parameters are not marked for export they will be numerically substituted.

The following selections specify the input ports, output ports, and states for generating Simulink blocks.

Select Group all inputs into a single vector to create a single 'vector' input port for all of the input signals instead of
individual ports. The order of the inputs are the same as given in the S-function mask window.

2 • Getting Started

Select Add additional inputs for required input variable derivatives to specify calculated derivative values instead
of numerical approximations.

Select Group all outputs into a single vector to define outputs as an S-Function 'mask'.

Select Add an additional output port for subsystem state variables to add extra output ports for the state variables.

Select Group all parameters into a single vector to to create a single parameter 'vector' for all of the parameters in
the S-function. If not selected, the S-function mask will contain one parameter input box for each of the S-function
parameters.

Select Generate m-script for assigning parameters to generate an initialization m-file with the system parameters.

Press Toggle Export Column to toggle selected/unselected parameters for export.

S-Function Options

These settings specify the advanced options for the code generation process.

Optimization Options

Set the level of code optimization to specify whether equations are left in their implicit form or converted to an ordinary
differential equation (ODE) system during the code generation process. This option specifies the degree of simplification
applied to the model equations during the code generation process and eliminates redundant variables and equations
in the system.

Select one of the following options:

None (0): no optimization is performed; the default equations will be used in the generated code.

Partial (1, 2): removes redundant equations from the system.

Full (3): performs index reduction to reduce the system to an ODE system or a differential algebraic equation (DAE)
system of index 1, and removes redundant equations.

Constraint Handling Options

TheConstraint Handling Options specifies whether the constraints are satisfied in a DAE system by using constraint
projection in the generated Simulink block. Use this option to improve the accuracy of a DAE system that has constraints.
If the constraint is not satisfied, the system result may deviate from the actual solution and could lead to an increase
in error at an exponential rate.

3 • Getting Started

Set the Maximum number of projection iterations to specify the maximum number of times that a projection is
permitted to iterate to obtain a more accurate solution.

Set the Error tolerance to specify the desirable error tolerance to achieve after the projection.

Select Apply projection during event iterations to interpolate iterations to obtain a more accurate solution.

Constraint projection is performed using the constraint projection routine in the External Model Interface as described
on The MathWorks™ web site to control the drift in the result of the DAE system.

Event Handling Options

The Event Handling Options specifies whether the events are satisfied in a DAE system by using event projection in
the generated Simulink block. Use this option to improve the accuracy of a DAE system with events. If the constraint
is not satisfied, the system result may deviate from the actual solution and could lead to an increase in error at an expo-
nential rate.

Set the Maximum number of event iterations to specify the maximum number of times that a projection is permitted
to iterate to obtain a more accurate solution.

Set the Width of event hysterias band to specify the desirable error tolerance to achieve after the projection.

SelectOptimize for use with fixed-step integrators to optimize the event iterations as a function of hysterias bandwidth.

Event projection is performed using the event projection routine in the External Model Interface as described on The
MathWorks™ web site to control the drift in the result of the DAE system.

Generate S-Function

Provide a name and specify the location for the generated file.

To generate an S-Function block without a Simulink connection, click Generate S-Function (no Compile).

To generate an S-Function block, click Generate and Compile S-Function.

View S-Function

Once you generate the S-Function code and create the block a MATLAB command window opens and the block with
any of the following specified parameters is generated in Simulink:

• Block Generation Script

4 • Getting Started

• C Code

• Parameter Script

1.4 Viewing MapleSim Connector Examples
Toolbox examples are available in the MapleSim Connector Examples palette in MapleSim.

Each example includes a code generation template in its Attachments palette.

To view an example:

1. In theMapleSimConnector Examples palette on the left side of the MapleSim window, expand one of the palettes,
and then click the entry for the model that you want to view.

2. In the Project tab, expand the Attachments palette and then expand Documents.

3. Right-click (Control-click for Macintosh) Simulink Component Block Generation and selectView. The template
opens in Maple.

Some models include additional documents, such as templates that display model equations or define custom components.
You can open any of these documents by right-clicking its entry and selecting View.

1.5 Example: RLC Circuit Model
In this example, you will generate a Simulink block from an RLC circuit model that was created in MapleSim.

Note: Before starting this tutorial, you must set up MATLAB and the mex compiler in order to have the template appear
in the list. For more information, see the MapleSimConnector,setup help page for more information.

To generate an S-function block:

1. In the MapleSim Connector Examples palette, select the RLC Parallel Circuit example.

2. Click the templates button () in the main toolbar.

3. From the list, select Simulink Component Block Generation.

4. In the Attachment field, enter RLC Circuit as the worksheet name and click Create Attachment. Your MapleSim
model opens in the Simulink Component Block Template in Maple.

5. Using the navigation controls above the model, select Main > RLC. The RLC subsystem appears in the workspace.

6. Click Load Selected Subsystem. All of the template fields are populated with information specific to the RLC
subsystem.

Note: By default, all parameters in the model are kept as configurable parameters.

7. In the S-Function Option section, set the Level of code optimization option to Full (3).

8. In the Generate F-Function section, specify the location of generated files.

9. Click Generate and Compile S-Function to generate the S-function code and create the block.

Note: Generating a block may require a few minutes.

A MATLAB command window opens and the block with the specified parameters is generated in Simulink.

5 • Getting Started

Double-clicking the block opens the mask that contains the symbolic parameters from the original model. This block
can now be connected with any compatible Simulink blocks.

1.6 Preparing a Model for Export
In this example, you will perform the steps required to prepare a slider-crank mechanism model and export it as an S-
function block:

1. Convert the slider-crank mechanism model to a subsystem.

2. Define subsystem inputs and outputs.

3. Define and assign subsystem parameters.

4. Export the model using the Simulink Component Block Generation template.

5. Implement the S-function block in Simulink.

Note: The following tutorial will take you through these steps in detail. Before starting this tutorial, you must set up
MATLAB and the mex compiler. For more information, see the MapleSimConnector,setup help page for more in-
formation.

To open the slider-crank mechanism example:

1. In MapleSim, expand the Examples palette and then expand the Tutorial submenu.

2. Select the Slider Crank example. The example appears in the workspace.

Converting the Model to a Subsystem

By converting your entire model or part of your model into a subsystem, you identify which parts of the model that
you want to export. In this example, you will prepare the system for export by grouping all of the components into a
subsystem.

6 • Getting Started

1. Using the selection tool () located above the model workspace, draw a box around all of the components in the
model.

2. From the Edit menu, select Create Subsystem. The Create Subsystem dialog box appears.

3. Enter SliderCrank as the subsystem name.

4. Click OK. A SliderCrank subsystem block appears in the model workspace.

Defining Subsystem Inputs and Outputs

MapleSim uses a topological representation to connect interrelated components without having to consider how signals
flow between them, whereas traditional signal-flow modeling tools require explicitly defined system inputs and outputs.
Since Simulink only supports data signals, properties on acausal ports, such as mechanical flanges and electrical pins,
must be converted to signals using the appropriate components. The resulting signals are directed as inputs and outputs
for the subsystem in MapleSim and for the S-function block.

Note: Currently, code generation is limited to subsystems with defined signal input (RealInput) and signal output
(RealOutput) ports.

In this example, you will convert the displacements of the slider and the joint between the crank and connecting rod
to output signals. The input signal needs to be converted to a torque that is applied to the revolute joint that represents
the crank shaft.

1. Double-click the subsystem block to view its contents. The broken line surrounding the components indicates the
subsystem boundary, which can be resized by clicking and dragging its sizing handles.

2. Delete the probes that are attached to the model.

3. On the left side of the MapleSim window, expand the Multibody palette and then expand the Sensors submenu.

7 • Getting Started

4. Drag theAbsolute Translation component to the model workspace and place it below thePrismatic Joint component.

5. Right-click (Control-click for Macintosh®) theAbsolute Translation component and selectRotate Counterclock-
wise.

6. From the Signal Blocks → Routing → Demultiplexers menu, drag a 3-port Demultiplexer component to the
model workspace and place it to the right of the Absolute Translation component.

7. To connect theAbsolute Translation component to the model, click the frame_b connector. The frame is highlighted
in green when you hover your pointer over it.

8. Draw a vertical line and click the connection line directly above the component. The sensor is connected to the rest
of the diagram.

9. In the same way, connect the r output port () of the Absolute Translation component to the demul-
tiplexer Real input signal (u) port. This is the displacement signal from the sensor in x, y, and z coordinates. Since the
slider only moves along the x axis, the first coordinate needs to be an output signal.

8 • Getting Started

10. Hover your pointer over the first demultiplexer port and click your mouse button once.

11. Drag your pointer to the subsystem boundary.

12. Click the boundary once. A real output port is added to your subsystem.

13. Add another Absolute Translation component above the Connecting Rod subsystem.

14. Right-click (Control-click for Macintosh) the Absolute Translation component and select Flip Vertically.

15. Add a 3-port Demultiplexer component to the right of the sensor and connect the components as shown below.

Since the crank is moving in the x, y plane, only the first two signals need to be outputs.

You will now add a real input port to your subsystem to control the torque on the crank shaft.

16. From the 1-D Mechanical → Rotational → Torque Drivers menu, add a Torque component to the model
workspace and place it above the Fixed Frame component.

17. Connect the white flange of the Torque component to the white flange of the leftmost Revolute Joint.

9 • Getting Started

18. Click the input port of the Torque component and drag your pointer to the subsystem boundary.

19. Click the boundary once. A real input port is added to your subsystem.

The complete subsystem appears below.

Define and Assign Subsystem Parameters

You can define custom parameters that can be used in expressions in your model to edit values more easily. To do so,
you define a parameter with a numeric value in the parameter editor. You can then assign that parameter as a variable
to the parameters of other components; those individual components will then inherit the numeric value of the parameter
defined in the parameter editor. By using this approach, you only need to change the value in the parameter editor to
change the parameter values for multiple components.

10 • Getting Started

1. While in the detailed view of the SliderCrank subsystem, click the Parameters button () above the model workspace.
The parameter editor appears.

2. In the New Parameter field, define a parameter called CrankL and press Enter.

3. Specify a default value of 1 and enter Length of the crank as the description.

4. In the second row of the table, define a parameter called ConRodL and press Enter.

5. Specify a default value of 2 and enter Length of the connecting rod as the description.

6. Click the Diagram button () to switch to the diagram view. The parameters are defined in the Inspector tab.

7. In the model workspace, select the Crank subsystem.

8. In the Inspector tab, change the length value (L) to CrankL.

The Crank subsystem now inherits the numeric value of CrankL that you defined.

9. Select the ConnectingRod subsystem and change its length value to ConRodL.

11 • Getting Started

10. Click the Main button above the model workspace to navigate to the top level of the model.

You will include these parameter values in the model that you export. You are now ready to convert your model to an
S-function block.

Exporting Your Model Using the Simulink Component Block Generation Template

After preparing the model, you can use the Simulink Component Block Generation template to set export options
and convert the model to an S-function block.

1. Click the templates button () in the main toolbar.

2. From the list, select Simulink Component Block Generation.

3. In the Attachments field, enter Slider Crank S-Function as the worksheet name and click Create Attachment.
The slider-crank subsystem opens in the Simulink Component Block Generation Template in Maple.

4. From the drop-down menu above the model, select SliderCrank.

5. In Step 1: Subsystem Selection of the template, click Load Selected Subsystem. All of the template fields are
populated with information specific to the subsystem.

6. In the Setting Parameters section, in the Parameter Name list, select the ConRodL parameter that you defined
in the previous section.

Note: The Keep as Block Parameter box is selected by default. Also, by default, all input an output ports, and para-
meters in the model are kept as configurable parameters.

7. Click the Generate and Compile S-Function button to generate the S-function code and create the block. A
MATLAB command window opens and the block with the specified parameters is generated in Simulink.

Note: Generating a block may require a few minutes.

Implement the S-Function Block in Simulink

In Simulink, you can connect your block to other compatible blocks, specify initial conditions, and edit the component
parameter values.

12 • Getting Started

1. In Simulink, double-click the block. The Parameter Mask dialog box appears.

This dialog box displays the ConRodL and CrankL parameters that you defined in MapleSim as a vector. The text
in the dialog describes each parameter in the order they appear in the vector. Initial conditions can also be changed in
this dialog box.

2. Click the Help button. This window provides a model description and information about the inputs, outputs, para-
meters, and initial conditions.

3. All inputs and outputs are implemented as vector signals. To access individual signals in Simulink, use a Mux block
for inputs and a Demux block for outputs.

13 • Getting Started

2 Creating and Exporting Mathematical Models in Maple
In Maple, you can use commands from the DynamicSystems package to create a system from first principles. Maple
contains a data structure called a system object that encapsulates the properties of a dynamic system. This data structure
contains information, for example, the description of the system, and the description of the inputs. Five different types
of systems can be created.

• Differential equation or difference equation

• Transfer function as an expression

• Transfer function as a list of numerator and denominator coefficients

• State-space

• Zero, pole, gain

You can use the Simulink Block Generation for DynamicSystems template, which provides embedded components
for generating source code and exporting a DynamicSystems object to Simulink. To open this template, enter ?Dy-
namicSystemsBlockGeneration at a prompt in a Maple worksheet.

Alternatively, you can create a DynamicSystems object in a new worksheet and use commands from the MapleSim-
Connector package to generate source code and save it as a MATLAB .m file.

2.1 Using a Template to Generate an S-Function Block
In this tutorial, you will use the Simulink Block Generation for DynamicSystems template to generate a Simulink
block from a dynamic system defined in Maple.

Before starting this tutorial, you must set up MATLAB and the mex compiler. For more information, see Establishing
a Connection with MATLAB.

To generate an S-function block from a dynamic system:

1. In a Maple worksheet, enter ?DynamicSystemsBlockGeneration. The template is opened.

2. If prompted to execute the entire worksheet, click Yes.

In the Component Equations section, you would normally define variables to store component equations and para-
meters.

These variables are referenced in the equations that define the system object. For demonstration purposes, the equations
and parameters of a DC Motor have been defined for you.

3. In the Generate Simulink Block section, select the Model radio button. This option places the S-function into a
new Simulink model instead of a Simulink block library.

14

4. Click Code Generation. The generated C code is displayed in the View Code section.

5. Click Generate to Simulink.

6. In the Select File dialog box, specify the path and name of the .m and .c files to which to save the generated code.

7. Click Save. Maple generates the Simulink block.

Note: Generating a block may require a few minutes.

A MATLAB command window is opened and the block with the specified parameters is generated in Simulink. Double-
clicking the block opens the mask that contains the symbolic parameters from the original model. This block can now
be connected with any compatible Simulink blocks.

2.2 Creating and Exporting a DynamicSystemsObject Programmatically
First, load the DynamicSystems and MapleSimConnector packages in the Maple worksheet.

>

>

To create a system object from the transfer function , use the following command:

>

(2.1)

To view the details of the system, use the PrintSystem command.

15 • Creating and Exporting Mathematical Models in Maple

>

(2.2)

The default values for the input names (and output names have been used. Alternatively, during creation
of the system, different input and output names can be specified.

To define parameters values, use the following command:

>

(2.3)

Finally, use the SBlock command to generate the source code and the SaveCode command to save the code as a .c
file and MATLAB .m file.

>

>

>

2.3 Example: DC Motor
Consider the classic example of the simplified DC motor. Using the built-in functionality of the DynamicSystems
package in Maple, you can define the system model, and then visualize and simulate it before saving the code.

This example demonstrates how to define, analyze, and export a system programmatically.

1. In a new Maple worksheet, define the system model.

16 • Creating and Exporting Mathematical Models in Maple

Differential Equation Model:

>

>

Transfer Function Model:

>

(2.4)

In place of the above commands, you could use the PrintSystem command to display each part of the model.

2. Specify the parameters in the model.
Units(Initial) ValueDescription

Input Variables
Applied voltage

Output Variables
Motor shaft angular position

Motor current

Parameters
Moment of inertia of the motor

Damping of the mechanical system

Electromotive force constant

Motor coil resistance

Motor coil inductance

External Spring Load Constant

>

>

3. Generate and save the source code as a .c file and MATLAB .m file.

17 • Creating and Exporting Mathematical Models in Maple

>

>

>

With the basic tools shown in this guide, you are now ready to use the MapleSim Connector to solve many system
design problems. Enter ?DynamicSystems and ?MapleSimConnector at a prompt in a Maple worksheet for more
information about the commands used in this guide.

18 • Creating and Exporting Mathematical Models in Maple

Index
D
DynamicSystems object, 14

Creating and Exporting Programmatically, 15
Transfer function, 15

G
Generate S-Function, 4

I
Inputs and outputs, 7

M
MapleSim Connector Examples Palette, 5
Mathematical model, 14
MATLAB

Setup, 1

P
Port and Parameter Management, 2

S
S-Function Options, 3
Simulink, 12
Subsystem

Creating, 6
Preparation, 2
Selection, 2

Subsystem parameters, 10
System object, 14

T
Templates

DynamicSystems, 14
Simulink Block Generation, 1, 12

V
View S-Function, 4

19

	Getting Started with the MapleSim Connector
	Contents
	Introduction
	1 Getting Started
	1.1 Setting Up the MapleSim Connector
	1.2 Getting Help
	1.3 Using the Simulink Component Block Generation Template
	Subsystem Preparation
	Subsystem Selection
	Port and Parameter Management
	S-Function Options
	Optimization Options
	Constraint Handling Options
	Event Handling Options

	Generate S-Function
	View S-Function

	1.4 Viewing MapleSim Connector Examples
	1.5 Example: RLC Circuit Model
	1.6 Preparing a Model for Export
	Converting the Model to a Subsystem
	Defining Subsystem Inputs and Outputs
	Define and Assign Subsystem Parameters
	Exporting Your Model Using the Simulink Component Block Generation Template
	Implement the S-Function Block in Simulink

	2 Creating and Exporting Mathematical Models in Maple
	2.1 Using a Template to Generate an S-Function Block
	2.2 Creating and Exporting a DynamicSystems Object Programmatically
	2.3 Example: DC Motor

	Index

